初中数学人教版七年级上册3.1.1 一元一次方程第1课时教学设计及反思
展开
这是一份初中数学人教版七年级上册3.1.1 一元一次方程第1课时教学设计及反思,共4页。教案主要包含了课堂小结,板书设计,课后反思等内容,欢迎下载使用。
一元一次方程教学设计意图综述1、突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.2、体现学生的主体意识.本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.3、体现学生思维的层次性.教师首先引导学生尝试用算术方法解决间题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.4、渗透建模的思想.把实际间题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.活动目标及重难点教学目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。教学重点:从实际问题中寻找相等关系。教学难点:从实际问题中寻找相等关系。教具准备 投影仪、课件 情境引入教师提出教科收第66页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义) 教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢? 学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量. 如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米. 2、教师引导学生寻找相等关系,列出方程. 问题1:题目中的“汽车匀速行驶”是什么意思? 问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗? 教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程: ,依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程: 3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤: (1)用字母表示问题中的未知数(通常用x,y,z等字母); (2)根据问题中的相等关系,列出方程. 巩固练习1、例题(补充):根据下列条件,列出关于x的方程: (1)x与18的和等于54; (2)27与x的差的一半等于x的4倍. 建议:本例题可以先让学生尝试解答,然后教师点评. 解:(1)x+18=54; (2)(27-x)=4x. 列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.2、练习(补充):列式表示:① 比a小9的数; ② x的2倍与3的和; ③ 5与y的差的一半; ④ a与b的7倍的和. (2)根据下列条件,列出关于x的方程: (1) 12与x的差等于x的2倍;x的三分之一与5的和等于6. 四、课堂小结可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:本节课我们学了什么知识?你有什么收获?说明方程解决许多实际问题的工具。 作业必做题:阅读教科书上70页的《阅读与思考》;第73页习题2.1第1,5题。选做题:根据下列条件,用式表示问题的结果:(1)一打铅笔有12支,m打铅笔有多少支?(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。 六、板书设计: 3.1从算式到方程(第一课时)慨念从实际问题到方程 七、课后反思
相关教案
这是一份人教版七年级上册3.1.1 一元一次方程第2课时教案,共5页。教案主要包含了课后反思等内容,欢迎下载使用。
这是一份初中数学人教版七年级上册3.1.2 等式的性质第2课时教案,共5页。教案主要包含了课后反思等内容,欢迎下载使用。
这是一份人教版七年级上册1.4.1 有理数的乘法第1课时教案设计,共3页。教案主要包含了过程与方法,复习提问,引入新课,巩固练习,课堂小结,作业布置,板书设计,课后反思等内容,欢迎下载使用。