人教版八年级上册13.1.1 轴对称示范课ppt课件
展开
这是一份人教版八年级上册13.1.1 轴对称示范课ppt课件,共18页。PPT课件主要包含了随堂练习等内容,欢迎下载使用。
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢? 今天继续来研究轴对称的性质.
如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系? 图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直. AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?
△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.
探究结果: 线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,… 证明.
证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的. 带着探究1的结论我们来看下面的问题.
[探究2]如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
探究过程: 1.如下图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.2.如下图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.
探究结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.
评析:上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
课本P62练习 1、2.
这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
相关课件
这是一份人教版八年级上册13.1.1 轴对称课文配套课件ppt,共34页。PPT课件主要包含了吉祥物,交通标志等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册13.1.1 轴对称图文课件ppt,共6页。PPT课件主要包含了思考课本34页思考,作直线CD,连接AB等内容,欢迎下载使用。
这是一份人教版四年级下册轴对称教案配套ppt课件,文件包含人教版数学四下711轴对称课件pptx、人教版数学四下711轴对称教案docx、人教版数学四下711轴对称-同步练习2附答案docx、人教版数学四下711轴对称-同步练习1附答案docx等4份课件配套教学资源,其中PPT共22页, 欢迎下载使用。