所属成套资源:2022年浙教版数学八年级下册同步练习(含答案)
2020-2021学年第二章 一元二次方程2.3 一元二次方程的应用练习题
展开
这是一份2020-2021学年第二章 一元二次方程2.3 一元二次方程的应用练习题,共5页。试卷主要包含了在一幅长为80 cm等内容,欢迎下载使用。
2022年浙教版数学八年级下册2.3《一元二次方程的应用》课时练习一、选择题1.某城第1年年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到第3年年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )A.300(1+x)=363B.300(1+x)2=363 C.300(1+2x)=363D.363(1-x)2=3002.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元 B.a(1-10%)(1+15%)万元 C.(a-10%+15%)万元 D.a(1-10%+15%)万元3.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10004.九年级某班在期中考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1190张卡片,设全班有x名学生,根据题意列出方程为( )A.x(x-1)=1190 B.x(x+1)=1190 C.x(x+1)=1190 D.x(x-1)=11905.在一幅长为80 cm.宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( ) A.x2+130x-1400=0 B.x2+65x-350=0 C.x2-130x-1400=0 D.x2-65x-350=06.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x名,据题意可列方程为 A.x(x+1)=253 B.x(x-1)=253 C.2x(x-1)=253 D.x(x-1)=253×27.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=158.已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2最小值是( )A.6 B.3 C.﹣3 D.0二、填空题9.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为 .10.某市准备加大对雾霾的治理力度,第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元,求这两个季度计划投入资金的平均增长率.设这两个季度计划投入资金的平均增长率为x,根据题意可列方程为____________.11.小明用30 cm的铁丝围成一斜边长等于13 cm的直角三角形,设该直角三角形的一直角边长为x cm,则另一直角边长为 cm,列方程得 .12.在一幅长50 cm,宽30 cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个矩形挂图的面积是1 800 cm2,设金色纸边的宽为x cm,那么x满足的方程为 .13.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .14.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价 元.三、解答题15.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会? 16.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染? 17.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场每天要获利润1200元,请计算出每件衬衫应降价多少元? 18.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.
参考答案1.B 2.B3.D 4.D 5.B 6.D 7.A.8.A9.答案为:x(5﹣x)=6.10.答案为:100(1+x)+100(1+x)2=26011.答案为:(17-x) ,x2+(17-x)2=132.12.答案为:x2+40x-75=0.13.答案为:20%.14.答案为:4.15.解:设有x家公司出席了这次交易会,根据题意,得x(x-1)=78.解得x1=13,x2=-12(舍去).答:有13家公司出席了这次交易会.16.解:(1)设每轮传染中平均一个人传染了x人,则1+x+x(x+1)=64.解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.17.解:设每件衬衫应降价x元,据题意得:(40﹣x)(20+2x)=1200,解得x=10或x=20.因题意要尽快减少库存,所以x取20.答:每件衬衫至少应降价20元.18.解:(1)设x秒后,△PBQ的面积等于4 cm2.根据题意,得x(5-x)=4.解得x1=1,x2=4.∵当x=4时,2x=8>7,不合题意,舍去.∴x=1.答:1 s后,△PBQ的面积等于4 cm2.(2)设y秒后,PQ=5 cm,则(5-y)2+(2y)2=25.解得y1=0(舍去),y2=2.∴y=2.答:2 s后,PQ的长度等于5 cm.(3)设a秒后,△PBQ的面积等于7 cm2.根据题意,得a(5-a)=7.此方程无解.∴△PBQ的面积不能等于7 cm2.
相关试卷
这是一份浙教版八年级下册2.3 一元二次方程的应用精品达标测试,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学浙教版八年级下册2.3 一元二次方程的应用精练,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙教版八年级下册2.3 一元二次方程的应用优秀练习题,共8页。试卷主要包含了3《一元二次方程的应用》等内容,欢迎下载使用。