初中数学21.2.1 配方法第2课时教案及反思
展开
这是一份初中数学21.2.1 配方法第2课时教案及反思,共2页。教案主要包含了复习引入,探索新知,巩固练习,应用拓展,归纳小结,布置作业等内容,欢迎下载使用。
21.2.1 配方法 教学内容 间接即通过变形运用开平方法降次解方程. 教学目标 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤. 重难点关键 1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤. 2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 教学过程 一、复习引入 (学生活动)请同学们解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0). 如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗? 二、探索新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面三个方程的解法呢? 问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少? (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有. (2)不能. 既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1.用配方法解下列关于x的方程 (1)x2-8x+1=0 (2)x2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略 三、巩固练习 教材P38 讨论改为课堂练习,并说明理由. 教材P39 练习1 2.(1)、(2). 四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半. 分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式. 解:设x秒后△PCQ的面积为Rt△ACB面积的一半. 根据题意,得:(8-x)(6-x)=××8×6 整理,得:x2-14x+24=0 (x-7)2=25即x1=12,x2=2 x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去. 所以2秒后△PCQ的面积为Rt△ACB面积的一半. 五、归纳小结 本节课应掌握: 左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程. 六、布置作业 1.教材 复习巩固2.3(1)(2)
相关教案
这是一份初中人教版21.2.1 配方法第1课时教学设计,共3页。教案主要包含了新知探究,课堂小结,作业设计等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.1 配方法第2课时教案,共3页。教案主要包含了复习引入,探究新知,课堂训练,小结归纳,作业设计等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.1 配方法第1课时教案及反思,共3页。教案主要包含了复习引入,探究新知,课堂训练,小结归纳,作业设计等内容,欢迎下载使用。