数学九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案
展开24.1.2 垂直于弦的直径
教学时间 |
| 课题 | 24.1.2 垂直于弦的直径 | 课型 | 新授课 | |||||||
教 学 目 标 | 知 识 和 能 力 | 探索圆的对称性,进而得到垂直于弦的直径所具有的性质; 能够利用垂直于弦的直径的性质解决相关实际问题. | ||||||||||
过 程 和 方 法 | 在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程. 进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神. | |||||||||||
情 感 态 度 价值观 | 使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神. | |||||||||||
教学重点 | 垂直于弦的直径所具有的性质以及证明. | |||||||||||
教学难点 | 利用垂直于弦的直径的性质解决实际问题. | |||||||||||
教学准备 | 教师 | 多媒体课件 | 学生 | “五个一” | ||||||||
课 堂 教 学 程 序 设 计 | 设计意图 | |||||||||||
一、创设问题情境,激发学生兴趣,引出本节内容 活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质) 学生活动设计: 学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 教师活动设计: 在学生归纳的过程中注意学生语言的准确性和简洁性. 二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神 活动2:按下面的步骤做一做: 第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合; 第二步,得到一条折痕CD; 第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足; 第四步,将纸打开,新的折痕与圆交于另一点B,如图1.
图1 图2 在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)
学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是直角三角形,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,与重合.因此AM=BM,=,同理得到. 教师活动设计: 在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质: (1)垂直于弦的直径平分弦,并且平分弦所对的两条弧; (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 活动3:如图3,所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径. 图3 学生活动设计: 学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,则有AD=BD,且△ADO是直角三角形,在直角三角形中可以利用勾股定理构造方程. 教师活动设计: 在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来. 〔解答〕设圆的半径为R,由条件得到OD=R-4,AD=8, 在Rt△ADO中 ,即. 解得 R=10(m). 答:此圆的半径是10 m. 活动4:如图4,已知,请你利用尺规作图的方法作出的中点,说出你的作法. 图4 师生活动设计: 根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点. 〔解答〕1.连接AB; 2.作AB的中垂线,交于点C,点C就是所求的点. 三、拓展创新,培养学生思维的灵活性以及创新意识. 活动5 解决下列问题 1.如图5,某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7.2米,桥的最高处点C离水面的高度2.4米.现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由. 图5 图6 学生活动:学生根据实际问题,首先分析题意,然后采取一定的策略来说明能否通过这座拱桥,这时要采取一定的比较量,才能说明能否通过,比如,计算一下在上述条件下,在宽度为3米的情况下的高度与2米作比较,若大于2米说明不能经过,否则就可以经过这座拱桥. 〔解答〕如图6,连接AO、GO、CO,由于弧的最高点C是弧AB的中点,所以得到 OC⊥AB,OC⊥GF, 根据勾股定理容易计算 OE=1.5米, OM=3.6米. 所以ME=2.1米,因此可以通过这座拱桥. 2.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图7所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?
图7 图8 师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维. 〔解答〕 如图8所示,连接OA,过O作OE⊥AB,垂足为E,交圆于F, 则AE=AB = 30 cm.令⊙O的半径为R, 则OA=R,OE=OF-EF=R-10. 在Rt△AEO中,OA2=AE2+OE2,即R2=302+(R-10)2. 解得R =50 cm. 修理人员应准备内径为100 cm的管道. 小结:垂直于弦的直径的性质,圆对称性. |
| |||||||||||
作业 设计 | 必做 | 习题24.1 第1题,第8题,第9题. | ||||||||||
选做 |
| |||||||||||
教 学 反 思 |
| |||||||||||
人教版九年级上册24.1.2 垂直于弦的直径精品教学设计: 这是一份人教版九年级上册24.1.2 垂直于弦的直径精品教学设计,共8页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
人教版九年级上册24.1.2 垂直于弦的直径精品教学设计及反思: 这是一份人教版九年级上册24.1.2 垂直于弦的直径精品教学设计及反思,共8页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
初中数学人教版九年级上册24.1.2 垂直于弦的直径教学设计: 这是一份初中数学人教版九年级上册24.1.2 垂直于弦的直径教学设计,共4页。