人教版九年级下册27.1 图形的相似课文配套ppt课件
展开
这是一份人教版九年级下册27.1 图形的相似课文配套ppt课件,共22页。PPT课件主要包含了“A”型,“X”型等内容,欢迎下载使用。
三条平行线截两条直线,所得的对应线段的比相等.
平行线分线段成比例定理:
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等.
平行线分线段成比例定理的推论
如果△ ABC∽ △ADE,那么你能找出哪些角的关系?
∠A = ∠A,∠B = ∠ADE,∠C = ∠AED.
如图,在△ABC中, DE//BC, DE分别交AB于D,交AC于E ,△ADE与△ABC有什么关系?说明理由.
证明:在△ADE与△ABC中,
∴∠ADE=∠B, ∠AED=∠C,
过E作EF//AB交BC于F,
∵ 四边形DBFE是平行四边形,
∴△ADE∽△ABC.
平行于三角形一边的定理
即在△ABC中,如果DE∥BC,那么△ADE∽△ABC
你还能画出其他图形吗?
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似.
即如果DE∥BC,那么△ODE∽△OBC
平行于三角形一边的直线与其他两边(或延长线)相交,所得的三角形与原三角形________.
思考:有没有其他简单的办法判断两个三角形相似?
任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同桌交流一下,看看是否有同样的结论.
是否有△ABC∽△A′B′C′?
求证: △ .
如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
判定三角形相似的定理之一
△ABC∽△A′B′C′.
三边对应成比例,两三角形相似.
改变k和∠A的值的大小,是否有同样的结论?
△ABC∽△A′B′ C′.
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
判定三角形相似的定理之二
两边对应成比例,且夹角相等,两三角形相似.
△ABC∽△A1B1C1.
不会,因为不能证明构造的三角形和原三角形全等.
A
B
C
这两个三角形一定会相似吗?
两个三角形的相似比是多少?
的三组对应边的比不等,它们不相似.
要使两个三角形相似,不改变AC的长,A′C′的长应改为多少?
例2 已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD= ,求AD的长.
解: AB=6,BC=4,AC=5,CD=
又∠B=∠ACD,
相似三角形的判定方法有几种?
3.边边边判定法(SSS)
4.边角边判定法(SAS)
只能在特定的图形里面使用
相关课件
这是一份数学九年级下册27.1 图形的相似教课课件ppt,共23页。PPT课件主要包含了相似图形,知识点1,成比例线段,知识点2,基础巩固,综合应用,图形的相似等内容,欢迎下载使用。
这是一份2020-2021学年第二十七章 相似27.1 图形的相似课文内容课件ppt,共26页。PPT课件主要包含了请观察下面几组图片,试试你的眼力,相似图形,生活中的相似图形,试一试,对应角,对应边等内容,欢迎下载使用。
这是一份初中数学人教版九年级下册27.1 图形的相似说课课件ppt,共16页。PPT课件主要包含了新知应用,课堂小结等内容,欢迎下载使用。