终身会员
搜索
    上传资料 赚现金
    第1套人教初中数学九下 27.2.1 相似三角形的判定教案1
    立即下载
    加入资料篮
    第1套人教初中数学九下  27.2.1 相似三角形的判定教案101
    第1套人教初中数学九下  27.2.1 相似三角形的判定教案102
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版27.2.1 相似三角形的判定教学设计

    展开
    这是一份初中人教版27.2.1 相似三角形的判定教学设计,共5页。教案主要包含了教学目标,重点,例题的意图,课堂引入,例题讲解,课堂练习,课后练习等内容,欢迎下载使用。

    一、教学目标
    1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
    2.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
    3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
    二、重点、难点
    1.重点:相似三角形的定义与三角形相似的预备定理、判定方法1
    2.难点:三角形相似的预备定理的应用.
    3.难点的突破方法
    (1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例, 每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;
    (2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;
    (3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;
    (4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):
    如△ABC∽△A′B′C′的相似比,那么△A′B′C′∽△ABC的相似比就是,它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;
    (5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.
    三、例题的意图
    本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.
    例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.
    四、课堂引入
    1.复习引入:
    (1)相似多边形的主要特征是什么?
    (2)在相似多边形中,最简单的就是相似三角形.
    在△ABC与△A′B′C′中,
    如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且 .
    我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.
    反之如果△ABC∽△A′B′C′,
    则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且 .
    (3)问题:如果k=1,这两个三角形有怎样的关系?
    2.提出问题:
    如图27·2-1,在∆ABC中,点D是边AB的中点,DE∥BC,
    DE交AC于点E ,∆ADE与∆ABC有什么关系?
    分析问题:观察27·2-1易知AD=,AE=,∠A=∠A,∠ADE=∠ABC,∠AED=∠ACB,只需引导学生证得DE=即可,学生不难想到过E作EF∥AB。∆ADE∽∆ABC,相似比为。
    延伸问题:
    改变点D在AB上的位置,先让学生猜想∆ADE与∆ABC仍相似,然后再用几何画板演示验证。
    3.归纳:
    三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.
    4.探究
    在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
    分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。(学生小组交流)
    在学生小组交流的基础上引导学生思考证明探究所得结论的途径。
    分析:作A1D=AB,过D作DE∥B1C1,交A1C1于点E
    ∆A1DE∽∆A1B1C1。用几何画板演示∆ABC平移至∆A1DE的过程
    A1D=AB,A1E=AC,DE=BC∆A1DE≌∆ABC
    ∆ABC∽∆A1B1C1
    归纳:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

    则∆ABC∽∆A1B1C1
    五、例题讲解
    例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
    (1)写出对应边的比例式;
    (2)写出所有相等的角;
    (3)若AB=10,BC=12,CA=6.求AD、DC的长.
    分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.
    解:略(AD=3,DC=5)
    例2(补充)如图,在△ABC中,DE∥BC, AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
    分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有 ,又由AD=EC可求出AD的长,再根据 求出DE的长.
    分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长.
    解:略().
    六、课堂练习
    1.(选择)下列各组三角形一定相似的是( )
    A.两个直角三角形 B.两个钝角三角形
    C.两个等腰三角形 D.两个等边三角形
    2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有( )
    A.1对 B.2对 C.3对 D.4对
    3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长. (CD= 10)
    七、课后练习
    1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式.
    2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.

    3.如图,DE∥BC,
    (1)如果AD=2,DB=3,求DE:BC的值;
    (2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.
    相关教案

    数学九年级下册27.2.1 相似三角形的判定第3课时教学设计: 这是一份数学九年级下册27.2.1 相似三角形的判定第3课时教学设计,共2页。教案主要包含了教学目标,重点,例题的意图,课堂引入,例题讲解,课堂练习,课后练习等内容,欢迎下载使用。

    2020-2021学年27.2.1 相似三角形的判定第2课时教案: 这是一份2020-2021学年27.2.1 相似三角形的判定第2课时教案,共3页。教案主要包含了教学目标,重点,例题的意图,课堂引入,例题讲解,课堂练习,课后练习等内容,欢迎下载使用。

    人教版九年级下册27.2.1 相似三角形的判定第1课时教学设计: 这是一份人教版九年级下册27.2.1 相似三角形的判定第1课时教学设计,共3页。教案主要包含了教学目标,重点,例题的意图,课堂引入,例题讲解,课堂练习,课后练习等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map