年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届新教材高中数学人教A版不等式单元测试含答案19

    2022届新教材高中数学人教A版不等式单元测试含答案19第1页
    2022届新教材高中数学人教A版不等式单元测试含答案19第2页
    2022届新教材高中数学人教A版不等式单元测试含答案19第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届新教材高中数学人教A版不等式单元测试含答案19

    展开

    这是一份2022届新教材高中数学人教A版不等式单元测试含答案19,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
      2022届新教材人教A版 不 等 式   单元测试一、选择题1、已知,则下列成立的是(      A. B. C. D.2、下列函数中,y的最小值为4的是(    A. B.C. D.3、已知为非零实数,且,则下列不等式一定成立的是(    A. B. C. D.4、已知不等式对任意实数恒成立,则实数的最小值为(    A. B. C. D.5、若正实数满足,则下列说法正确的是(     A.有最小值 B.有最小值C.有最小值 D.有最小值46、下列函数中,的最小值为的是(    A. B.C. D.7、,且,则下列不等式中恒成立的是(    A. B.C. D.8、如果, 设, 那么(    )A. B.C. D.的大小关系与有关9、在R上定义运算: =ad-bc.若不等式 -1对任意实数x恒成立,则实数a的最大值为(      )A.     B. -1    C.     D. 210、
    若变量满足,则的最大值为(   )。A.     B.     C.     D. 11、函数的最小值是(  )A.2+2 B.2-2 C.2 D.212、实数,且满足,则的最小值是(    A. B. C. D. 二、填空题13、不等式表示的平面区域内的整点个数为           14、 不等式,对任意恒成立,则实数的取值范围是     15、,则的最小值为______.16、已知正数满足:,则的最小值为____________. 三、解答题17、(本小题满分10分)(Ⅰ)关于的不等式的解集为,求实数的取值范围;(Ⅱ)关于的不等式的解集为,求的值.18、(本小题满分12分)已知,(其中实数(1)分别求出中关于的不等式的解集(2)若必要不充分条件,求实数的取值范围.19、(本小题满分12分)已知命题:,都有不等式成立是真命题.1)求实数的取值集合2)设不等式的解集为,若的充分不必要条件,求实数的取值范围.20、(本小题满分12分)若不等式的解集为,求不等式的解集.   
    参考答案1、答案C解析根据已知条件,利用指数函数,对数函数的单调性以及不等式性质,逐一分析即可.详解:对,等价于,因为,显然,不等式不成立;,因为是增函数,又因为,故,故不等式不成立;,因为是增函数,又因为,故,故不等式不成立;,等价于,因为,显然,故不等式成立.故选:C.点睛本题考查不等式的性质,以及利用对数和指数函数的单调性比较大小,属基础题.2、答案A解析根据基本不等式,以及基本的应用条件一正二定三相等,即可判断.详解:对于Aex0,所以ex+4,当且仅当xln2时取等号,故A成立;对于B,当且仅当取等号,故B不成立;对于C,当时,得当且仅当取等号,时,得当且仅当取等号,故C不成立;对于D,得当且仅当取等号,又,故D不成立.故选:A点睛本题考查了基本不等式的应用,关键是掌握一正二定三相等,属于基础题.3、答案C解析利用特殊值法可判断出ABD三个选项中不等式的正误,利用作差法可判断C选项中不等式的正误,由此可得出结论.详解:对于A选项,由于,取,则A选项中的不等式不成立;对于B选项,由于,取,则B选项中的不等式不成立;对于C选项,,所以,不可能同时为零,则,则又由得,,故有,转化得C选项中的不等式成立;对于D选项,当时,,所以,D选项中的不等式不成立.故选:C.点睛本题考查不等式正误的判断,一般利用特殊值法、作差法、不等式的基本性质和函数的单调性进行判断,考查推理能力,属于基础题.4、答案C解析由题意可知,,将代数式展开后利用基本不等式求出该代数式的最小值,可得出关于的不等式,解出即可.详解.,则,从而无最小值,不合乎题意;,则.①当时,无最小值,不合乎题意;②当时,,则不恒成立;③当时,当且仅当时,等号成立.所以,,解得,因此,实数的最小值为.故选:C.点睛本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.5、答案D解析根据不等式的性质,对每一项进行逐项分析即可.详解对A:由均值不等式可得:,当且仅当时取得最大值,不是最小值,故错误;对B:,当且仅当时取得,此时取得最大值,不是最小值,故错误;对C:当且仅当时取得最小值,故错误.对D:当且仅当取得最小值.故正确.故选:D.点睛本题考查不等式的性质,涉及均值不等式的使用,属综合基础题.6、答案C解析根据基本不等式,逐项判断,即可得出结果.详解对于A选项,当时,,当且仅当,即时,等号成立;时,,当且仅当,即时,等号成立;故A错误;对于B选项,,当且仅当,即时,取等号,而显然不成立;函数取不到最小值,故B错误;对于C选项,,当且仅当,即时,等号成立;故C正确;对于D选项,因为,所以,又,当且仅当,即时,等号成立,但,故D错误;故选:C点睛本题主要考查基本不等式的应用,熟记基本不等式,并注意取等号的条件即可,属于常考题型.7、答案D解析根据条件取取,即可排除错误选项.详解:解:根据,且,取,则可排除,则可排除故选:点睛本题考查了不等式的基本性质,属于基础题.8、答案A解析通过作差法可以比较M,N的大小.详解因为,所以,因为,所以,即.故选:A点睛本题主要考查判断两个式子的大小关系,作差法是解决此类问题的常用方法.9、答案D详解:因为 =ad-bc,所以对任意实数x恒成立,所以,即实数a的最大值为2,因此选D.点睛:考查一元二次不等式恒成立问题,考查数形结合与等价转化数学思想方法.10、答案D解析分析作出可行域及目标函数对应的直线,平移直线可得最优解.详解作出可行域,如图五边形,作直线,平移直线,当过点时,为最大值.故选D.点睛本题考查简单的线性规划,解题方法是作出可行域,再作出函数对应的直线,平移直线可得最优解.
    11、答案A解析先将函数变形可得y==(x﹣1)++2,再利用基本不等式可得结论.详解:y==(x﹣1)++2∵x>1,∴x﹣1>0∴(x﹣1)+≥2(当且仅当x=+1时,取等号)∴y=≥2+2故选A.点睛本题考查函数的最值,考查基本不等式的运用,属于中档题.在利用基本不等式求最值时,要特别注意拆、拼、凑等技巧,使其满足基本不等式中”(即条件要求中字母为正数)、“”(不等式的另一边必须为定值)、“”(等号取得的条件)的条件才能应用,否则会出现错误.12、答案C解析可得出,然后利用基本不等式可求得的最小值.详解:当且仅当时,等号成立,因此,的最小值是.故选:C.点睛本题考查利用基本不等式求代数式的最值,解题的关键在于对所求代数式进行化简变形,考查计算能力,属于中等题.13、答案13个 14、答案 解析方法一:令,当时,不等式为不合题意;时,需,解得;综上 方法二:考点不等式恒成立问题15、答案7解析根据已知条件把1用替换,再由基本不等式,即可求解.详解=当且仅当时,等号成立.点睛本题考查基本不等式求最值,考查计算能力,属于基础题.16、答案解析可得,利用基本不等式即可得答案.详解可得,,当且仅当时,等号成立, 所以的最小值为.故答案为:点睛本题考查利用基本不等式求最值,关键在于已知条件的灵活运用,属于中档题.17、答案(I);(II),或.试题解析:(Ⅰ)关于的不等式的解集为所以(1)解得,(2)时符合题意.所以(Ⅱ)关于的不等式的解集为所以,所以,或解析18、答案(1);(2)(2)必要不充分条件,故,得到,解得答案.详解:(1),解得,故,即,故,故,故.(2)必要不充分条件,故,故,等号不同时成立.解得,故.点睛本题考查了解不等式,根据必要不充分条件求参数,意在考查学生的计算能力和综合应用能力.解析19、答案试题解析:1)命题:,都有不等式成立是真命题,得时恒成立,得,即.2)不等式,即时,解集,若的充分不必要条件,则的真子集,,此时,即时,解集,满足题设条件;,即时,解集,若的充分不必要条件,则有,此时.综上①②③可得点睛本题主要考查了含参数一元二次不等式的解法分类讨论的思想以及充分必要条件的理解转化集合的交集运算等属于难题.解决不等式恒成立求参数的范围问题,常采用分离参数求最值;解含参数的二次不等式时,常从二次项系数、判别式、两个根的大小进行讨论.解析20、答案不等式的解集为空集由题意可求得,然后结合一元二次不等式的性质可得不等式的解集为空集.试题解析:∵不等式的解集∴-的两根,且,∴不等式即为因为判别式△=1-24=-23所以不等式的解集为空集.解析 

    相关试卷

    2022届新教材高中数学人教A版不等式单元测试含答案16:

    这是一份2022届新教材高中数学人教A版不等式单元测试含答案16,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022届新教材高中数学人教A版不等式单元测试含答案18:

    这是一份2022届新教材高中数学人教A版不等式单元测试含答案18,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022届新教材高中数学人教A版不等式单元测试含答案14:

    这是一份2022届新教材高中数学人教A版不等式单元测试含答案14,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map