北师大版七年级下册1 认识三角形教案
展开《3.1认识三角形》
一、教学目标
(一)知识目标
1.三角形的概念;
2.三角形的三边关系.
(二)能力目标
1.通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.
2.结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.
(三)情感目标
联系学生的生活环境、创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.
二、教学重难点
1.教学重点
三角形三边关系的探究和归纳
2.教学难点
三角形三边关系的应用
三、教学过程
Ⅰ.创设现实情景,引入新课
[师]看下列实物中,有你熟悉的图形吗?
(出示投影:一些含有三角形的建筑物)
立交桥、起重机、自行车、红领巾、空调外机的支架等.
[生]线段、角、三角形、圆.
[师]好,在生活中随处可见含有几何图形的物体,线段、角已系统地介绍过.圆将在以后的章节中介绍.从今天开始,我们来系统地研究第五章:三角形.
三角形,它简单、有趣,也十分有用.既可以帮助我们更好地认识周围的世界,也可以帮助我们解决很多的实际问题.
在本章里,我们将学习三角形的基本性质,探索三角形全等的条件,并利用这些结果解决一些实际问题.
今天我们先来认识三角形.
Ⅱ.讲授新课
在小学数学中我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:
观察下面的屋顶框架图.
图5-1 图5-2
(1)你能从图5-1中找出4个不同的三角形吗?
(2)与同伴交流各自找的三角形.
(3)这些三角形有什么共同特点?
[师]要找三角形,必须知道什么是三角形.
[师生共析]由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
三角形的基本要素:边、角、顶点.
三角形有三条边,三个内角和三个顶点.
[生]我能找到4个不同的三角形.
[师]好.与同伴交流一下.
……
[师]能说清楚吗?可能同桌的两位或前后能指着说,隔一行或隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那怎么样就可以表示清楚呢?
[生]用符号表示.
[师]对,这就需要用符号来表示三角形.“三角形”可以用符号“△”表示,如图5-3(1)中顶点是A、B、C的三角形,记作“△ABC”读作“三角形AB”,∠A、∠B、∠C是三角形的角,线段AB、BC、CA是三角形的边.
(1) (2)
图5-3
△ABC的三边,有时也用a、b、c来表示.如图5-3(2):顶点A所对的边BC用a表示,边AC、边AB分别用b、c来表示.
好.下面大家从图5-3(1)中找出6个不同的三角形,并用符号表示.
[生甲]△ABD、△ADF、△ADE、△AGE、△BDF、△ADC.
[生乙]还可以△AEC、△ECG、△ABC.
[师]很好,大家看看这些三角形有什么共同特点呢?
[生丙]由三条线段组成.
[生丁]不行,必须是由三条线段顺次首尾相接,否则如图5-4,不是由线段AB、CD、EF组成的三角形.
图5-4
[生戊]这三条线段不能在同一直线上,否则构不成三角形.
[师生共析]由此可知三角形的本质特点:
(1)不在同一直线上的三条线段.
(2)这三条线段首尾顺次相连.
[师]好,下面我们来议一议.
(1)元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色的彩灯的电线哪根长呢?说明你的理由.
图5-5
(2)在一个三角形中,任意两边之和与第三边的长度有怎样的关系?为什么?
[生甲]装有黄色彩灯的电线长,我是通过测量得到的.
[生乙]装有黄色彩灯的电线长.因为我们在上册书中学习过这样一个性质:两点之间的所有连线中,线段最短.所以把装有红色灯的电线两端当作两个点,这样它就最短.因此,装有黄色彩灯的电线长.
[生丙]在一个三角形中,任意两边之和大于第三边.如图5-6:
图5-6
△ABC中,若把B、C这两个顶点看作是定点,由“两点之间的所有连线中,线段最短”,可以得到:
AB+AC>BC.
同样,若把顶点A、C看作定点,可以得到:
AB+BC>AC
若把顶点A、B看作定点,可以得到:
BC+AC>AB
因此可以得:三角形的任意两边的和大于第三边.
[师]同学们讨论得很好,尤其是第(2)个问题说得很透彻,由此得到了三角形的三边之间的关系:
三角形任意两边之和大于第三边.
注意:“任意”是没有任何条件的限制.
下面同学们来画一个锐角三角形,一个钝角三角形,一个直角三角形.然后根据下列问题来做一做.
分别量出下面三个三角形的三边长度,并填入空格内:
(1) (2) (3)
图5-7
(1)a=___________,b=___________,c=___________
(2)a=___________,b=___________,c=___________
(3)a=___________,b=___________,c=___________
计算每个三角形的任意两边之差,并与第三边比较,你能得到什么结论?
(学生画、量、计算)
[生甲]这三个三角形的三边中,每两边的差都小于第三边.
[生乙]通过计算,我们得到了:
三角形任意两边之差小于第三边.
[师]很好.这样我们又得到了三角形的三边之间的关系:
三角形任意两边之差小于第三边.
这个关系实际上可以由“三角形任意两边之和大于第三边”推导而来.所以,任意三角形都满足:“任意两边之和大于第三边”,或者:“任意两边之差小于第三边”,二者相互制约.
下面我们做练习来熟悉三角形的三边关系.
下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?实际摆一摆,验证你的结论.
(1)7 cm、5 cm、11 cm
(2)4 cm、3 cm、7 cm
(3)5 cm、10 cm、4 cm
[生甲](1)7+5=12>11
7+11=18>5
11+5=16>7
所以由7 cm、5 cm、11 cm长的三根小木棒能摆成三角形.
[生乙]老师,这样比较太麻烦,是不是可以只计算一组就行呢?
[师]可以吗?
[生丙]不可以.如(2):7+3=10>4,但进行拼摆时,这三根小木棒在同一直线上,说明由4 cm、3 cm、7 cm长的三根小木棒不能构成三角形.
[生丁]我也觉得不行.如(3):10+5=15>4,但通过摆时,也发现这三根小木棒不能摆成三角形.
[生戊]我觉得可以,只需要求出两条较短的线段的和与最长的线段进行比较,如果满足“两线段的和大于第三条线段”,则这三条线段就能构成三角形,否则就不行.
[生子]也可以先求出两条较长线段的差,然后与最短的线段进行比较.若小于,则这三条线段就能构成三角形,若等于或大于,就不行.
[师]噢,大家讨论得很激烈,戊同学和子同学说得对吗?同学们来试一试.
[生]他们俩说得对.
[师]很好,这样给你三条线段,问能否组成三角形,就不必一一去验证了,只需要求出两条较短的线段的和与最长的线段进行比较,或求出两条较长的线段的差与最短的线段进行比较即可.所以刚才的(2):由于4+3=7.出现了两边之和等于第三边的情况,所以它们不能摆成三角形.(3):由于4+5=9<10,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.
好,下面我们来看例题:
[例1]有两根长度分别为5 cm和8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?
[师生共析]利用刚才讨论的方法去解.
解:取长度为2 cm的木棒时,由于2+5=7<8,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.
取长度为13 cm的木棒时,由于5+8=13,出现了两边之和等于第三边的情况,所以它们也不能摆成三角形.
[师]大家想一想:你能取一根木棒,与原来的两根木棒摆成三角形吗?
[生甲]能.取一根4 cm长的木棒.
[生乙]取5 cm、6 cm、7 cm、8 cm长的木棒都可以.
[师]很好.实际上,若有两根长度分别为5 cm和8 cm的木棒,那么第三根木棒的长度只需大于8-5=3 cm,而小于8+5=13 cm.即能摆成三角形.
接下来我们做练习进一步巩固本节所学内容.
Ⅲ:练习
补充练习
1.指出图5-8中有几个三角形,并用符号表示出来.
图5-8
图5-9
答案:图中有12个三角形.如图5-9中标上字母时,这12个三角形分别为:
△ADE、△BCF、△BCD、△BCE、△BCA、△DEF、△DEB、△DEC、△ABE、△ACD、△BDF、△CEF.
2.如果线段a、b、c可以构成三角形,那么它们的长度的比有可能是( )
A.2∶3∶4 B.2∶2∶4
C.2∶2∶5 D.1∶2∶3
答案:A
Ⅳ.课时小结
本节课我们学习了三角形的概念及基本要素,重点研究了三角形的三边关系.
(1)从三角形三边关系的研究中可知三角形的三边相互制约——任意两边之和大于第三边,且任意两边之差小于第三边.
(2)判断a、b、c三条线段能否组成一个三角形,应注意:a+b>c,b+c>a,a+c>b.三个条件缺一不可.当a是a、b、c三条线段中最长的一条时,只要b+c>a,就有任意两条线段的和大于第三边.
Ⅴ.课后作业
Ⅵ.活动与探究
1.一个三角形的两边b=4,c=7,试确定第三边a的范围.当各边均为整数时,有几个三角形?有等腰三角形吗?等腰三角形的各边长各是多少?
[过程]让学生讨论、归纳,进一步掌握三角形的三边关系.
[结果]当一个三角形的两边b=4,c=7时,第三边a的范围为:7-4<a<7+4即:3<a<11.
当各边均为整数时,第三边可能为:4、5、6、7、8、9、10.因此共有7个三角形.当a=4或a=7时,这个三角形为等腰三角形.其各边长分别为:4、7、4;4、7、7.
数学七年级下册1 认识三角形教案及反思: 这是一份数学七年级下册1 认识三角形教案及反思
初中数学北师大版七年级下册1 认识三角形教学设计: 这是一份初中数学北师大版七年级下册1 认识三角形教学设计
初中数学北师大版七年级下册1 认识三角形教案设计: 这是一份初中数学北师大版七年级下册1 认识三角形教案设计,共5页。教案主要包含了教学设计反思等内容,欢迎下载使用。