![北师大初中数学八下《1.4.角平分线》word教案 (4)第1页](http://img-preview.51jiaoxi.com/2/3/12432005/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北师大版八年级下册4 角平分线教学设计
展开
这是一份北师大版八年级下册4 角平分线教学设计,共3页。
§11.3.2 角的平分线的性质(二) (三)情感与价值观要求 通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.教学重点:角平分线的性质及其应用.教学难点:灵活应用两个性质解决问题.教学方法:探索、归纳的方法.教学过程 一.创设情境,引入新课 [师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么? 二.导入新课 角平分线的性质即已知角的平分线,能推出什么样的结论. 操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求. 画一画: 按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长? 拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的. 问题1:你能用文字语言叙述所画图形的性质吗? 问题2:(出示投影片)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表: 学生通过讨论作出下列概括: 已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足. 由已知事项推出的事项:PD=PE. 于是我们得角的平分线的性质: 在角的平分线上的点到角的两边的距离相等. [师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表: 下面请同学们思考一个问题. 思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)? 1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题? 2.比例尺为1:20000是什么意思? 讨论结果展示: 1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离200m的意思.作图如下:第一步:尺规作图法作出∠AOB的平分线OP. 第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了. 总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题. [例]如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等. [师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性可以解决这个问题. 证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F. 因为BM是△ABC的角平分线,点P在BM上. 所以PD=PE. 同理PE=PF. 所以PD=PE=PF. 即点P到三边AB、BC、CA的距离相等. 三.随堂练习 1.课本P22练习. 2.课本P22习题11.3第3题. 在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等. 四.课时小结 今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,可以看出,随着研究的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.五.课后作业:课本P22页习题11.3第4、5、6题.
相关教案
这是一份初中数学湘教版八年级下册1.4 角平分线的性质教学设计及反思,共3页。
这是一份初中湘教版1.4 角平分线的性质教案,共2页。教案主要包含了创设情境,引入课题,合作交流,探究新知等内容,欢迎下载使用。
这是一份数学八年级下册1.4 角平分线的性质教学设计,共2页。教案主要包含了互动学习,巩固练习,回顾与小结等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)