


河南省安阳市2021-2122学年九年级上学期期中数学试题(word版 含答案)
展开
这是一份河南省安阳市2021-2122学年九年级上学期期中数学试题(word版 含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021—2022学年期中考试九年级数学试题卷一、选择题(每小题3分,共30分)1、 实数的相反数是( ) A. B. C. D.2、 2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地 球约320000000千米.数320000000科学记数法表示为 ( ) A. B. C. D.3、 下列运算中,正确的是 ( ) A.a2+a=a3 B.(ab)2=ab2 C.a5÷a2=a3 D.a5・a2=a104、 一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则 ∠2=( ) A.40° B.43° C.45° D.47°5、 如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是 ( ) A. B. C. D.6、 我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟 三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10 斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒 各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为 ( ) A. B. C. D.7、 如图是某商场营业大厅自动扶梯的示意图.自动扶梯的倾斜角为,大厅两层 之间的距离为6米,则自动扶梯的长约为 ()( ) A.7.5米 B.8米 C.9米 D.10米8、 如图,正比例函数的图象与反比例函数的图象相 交于A,B两点,点B的横坐标为2,当时,x的取 值范围是( ) A.或 B.或 C.或 D.或9、 如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是 ( )A.(,-) B.(1,0) C.(-,-) D.(0,-1)10、如图1,菱形的对角线与相交于点O,P、Q两点同时从O点出发, 以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为, 点Q的运动路线为.设运动的时间为x秒,P、Q间的距离为y厘米, y与x的函数关系的图象大致如图2所示, 当点P在段上运动且P、Q两 点间的距离最短时,P、Q两点的运 动路程之和为( )厘米. A. B. C. D.二、填空题(每小题3分,共15分)11、若式子在实数范围内有意义,则x的取值范围是________.12、设是关于x的方程的两个根,且,则_______.13、已知函数,当时,函数的最大值为_________。14、如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分 别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交 BC边于F,连接E,F,那么图中阴影部分的面积为 . 15.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A',当点 E、A'、C三点在一条直线上时,DF的长度为 .三、解答题16.(8分)先化简,再求值:,其中. 17.(9分)某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜 爱情况,从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅 不完整的统计图. 请根据以上信息,解答下列问题 (1)这次被调查的学生共有多少名? (2)请将条形统计图补充完整; (3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名? (4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中 选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率. 18.(9分)在一次课外活动中,某数学兴趣小组测量一棵树的高度.如图所示,测得 斜坡的坡度,坡底的长为8米,在处测得树顶部的仰角为, 在处测得树顶部的仰角为,求树高.(结果保留根号) 19.(9分)如图,正比例函数与反比例函数的图象交于点A, 轴于点B,延长AB至点C,连接.若, . (1)求的长和反比例函数的解析式; (2)将绕点旋转90°,请直接写出旋转后点A 的对应点A'的坐标. 20.(9分)如图,以△ABC的边AB为直径的⊙ O交AC边于点D,⊙ O的切线DE交 BC于E,且点E是BC的中点. (1)求证:BC是⊙O的切线; (2)①当∠BAC= °时,四边形OBED为正方形; ②若AB=4,当BC= 时,四边形ODCE是平行四边形. 21.(10分)为提升青少年的身体素质,我市在全市中小学推行“阳光体育”活动,某中学 为满足学生的需求,准备再购买一些篮球和足球.如果分别用800元购买篮球和足 球,购买篮球的个数比足球的个数少2个,已知足球的单价为篮球单价的. (1)求篮球、足球的单价分别为多少元? (2)学校计划购买篮球、足球共60个,总费用不多于5200元,并且要求篮球数量 不能低于15个,那么应如何安排购买方案才能使费用最少,最少费用应为多少? 22.(10分)如图,已知二次函数的图象经过点,且对称轴是直线 .该函数图象和x轴交于B,C两点(点B在点C的左侧). (1)求该函数解析式; (2)求B,C两点的坐标; (3)点P是直线AC下方抛物线上的一个动点,过点P作 ,垂足为Q,求PQ的最大值. 23.(23分)等腰△ABC,AB=AC,∠BAC=120°,AF⊥BC于F,将腰AB绕点A逆时针 旋转至AB′,记旋转角为α,连接BB′,过C作CE垂直于直线BB′,垂足为E,连接 CB′.
(1)问题发现:如图1,当时,的度数为_______;连接EF,则 的值为________. (2)拓展探究:当,且时, ①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明; 如果不成立,请说明理由; ②解决问题:当A,E,F三点共线时,请直接写出的值.
2021—2022学年期中考试九年级数学参考答案一、选择题1、D 2、B 3、C 4、B 5、A 6、A 7、D 解:根据题意,得:∵米∴米8、C 解:∵正比例函数与反比例函数都关于原点对称,∴点A与点B关于原点对称,∵点B的横坐标为2,∴点A的横坐标为-2,由图象可知,当或时,正比例函数的图象在反比例函数的图象的上方,∴当或时,,故选:C.9、A 解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,-),…,发现是8次一循环,所以2019÷8=252……3,∴点A2019的坐标为(,-)10、C 解:由图可知,(厘米),∵四边形为菱形∴(厘米)∴P在上时,Q在上,距离最短时,连线过O点且垂直于.此时,P、Q两点运动路程之和∵(厘米)∴(厘米) 故答案为C.二、填空题:11、x≥0 12、2 13、514、+﹣.解:过A作AM⊥BC于M,EN⊥BC于N,∵等边三角形ABC的边长为2,∠BAC=∠B=∠ACB=60°,∴AM=BC=×2=,∵AD=AE=1,∴AD=BD,AE=CE,∴EN=AM=,∴图中阴影部分的面积=S△ABC﹣S扇形ADE﹣S△CEF﹣(S△BCD﹣S扇形DCF)=×2×﹣﹣×﹣(×﹣)=+﹣15、1或11;解:在旋转过程中A有两次和E,C在一条直线上,第一次在EC线段上,第二次在CE线段的延长线上,利用平行的性质证出CF=CE,即可求解;如图1:将△AEF沿直线EF折叠,点A的对应点为点A',∴∠AEF=∠EA'F,AE=A'E,∵AB∥CD,∴∠AEF=∠CFE,∴CF=CE,∵AB=6,AD=3,AE=2,∴CF=CE=6﹣DF,A'E=2,BE=4,BC=3,∴EC=5,∴6﹣DF=5,∴DF=1;如图2:由折叠∠FEA'=∠FEA,∵AB∥CD,∴∠CFA=∠FAB,∵∠FAB=EA'F ∠AFE=A'FE∴∠CFA+∠AFE=CEF= EA'F+ A'FE∴∠CFE=∠CEF,∴CF=CE,∴CF=5,∴DF=11;三、解答题16. 解:,当时,原式;17. 解:(1)这次被调查的学生人数为(名;(2)喜爱“体育”的人数为(名,补全图形如下: (3)估计全校学生中喜欢体育节目的约有(名;(4)列表如下: 甲乙丙丁甲(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)由上表可知,所有等可能的结果为12种,恰好选中甲、乙两位同学(设为事件A)的有2种结果,答:恰好选中甲、乙两位同学的概率为.18.解:作于点,设米,在中,,则(米,∵,且AE=8 ∴ ∴ 在直角中,米,,米.,即.解得:,则米.答:的高度是米.19. 解:(1) ∵ 轴于点B ∴ 在中,, ∴ , ∴ 点A的横坐标为2 又∵ 点A在正比例函数的图象上∴ ,∴ 把代入,得∴ , ∴ 反比例函数的解析式是 ;(2)根据题意,∵ 点A为(2,1),∵ 将绕点旋转90°,则分为:顺时针旋转90度和逆时针旋转90度,如图:∴ 或.20. 解:(1)证明:连接OD、OE,如图1所示:∵ 点O为AB的中点,点E为BC的中点, ∴ OE为△ABC的中位线,∴ OE∥AC, ∴ ∠ DOE=∠ ODA,∠ BOE=∠ A,∵ OA=OD, ∴∠ A=∠ ODA, ∴ ∠ DOE=∠ BOE,在△ODE和△OBE中,∴△ ODE≌ △ OBE(SAS), ∴∠ ODE=∠ OBE,∵ DE是⊙O的切线,∴ ∠ ODE=∠ OBE=90°,∴ OB⊥BC,又OB是⊙ O的半径∴ BC是⊙ O的切线;(2)解:①当∠BAC=45°时,四边形OBED是正方形 ②当BC=4时,四边形ODCE是平行四边形21. 解:(1)设篮球每个x元,足球每个x元,由题意得:,解得:x=100,经检验:x=100是原方程的解且符合题意,则足球的单价为:x=×100=80(元),答:篮球每个100元,足球每个80元;(2)足球m个,总费用为w元,则篮球(60-m)个,由题意得, w=80m+100(60-m)=-20m+6000,再由题意可得,,解得,40≤m≤45,由w=-20m+6000, ∵ - 20<0, ∴ w随m的增大而减小,∴ 当m=45时,w取得最小值,此时w=5100元,其中60-m=15,答:当篮球购买15个,足球购买45个时,费用最少,最少为5100元.22. 解:(1)∵二次函数的图象经过点,且对称轴是直线,∴ 解得,,∴ 这个二次函数解析式为;(2)当时,,解得,,所以点B,C的坐标分别为,;(3)如图所示,连接CP,连接AP交x轴于H,∵A(0,3),C(3,0),∴OA=OC=3,∴,∵PQ⊥AC,∴,设,直线AP的解析式为,∴ ,解得,∴ 直线AP的解析式为,∵ H是直线AP与x轴的交点, ∴,∴ ,∴ ∴ ,∵ 要想PQ最大,则要最大, ∴ 当,有最大值,∴ 此时.23.(1)∠ CB′E=60°,; (2)①两个结论成立,理由如下: 连接EF,根据旋转的性质得:AB=AC=AB′,等腰△ABB′中,∠ BAB′=α, 则∠ AB′B==90°−α,等腰△AB′C中,∠ CAB′=α−120°, 则∠ AB′C==150°−α,∴ ;∵ AB=AC,AF⊥BC. ∴ ∠ FAC=60°,Rt△ CEB′中,=sin60°=, Rt△ CFA 中,=sin60°=,∴ ,∵∠FCE=∠ ACB′=30°+∠ACE,∴ △CEF~△ CB′A∴;②的值为或.
相关试卷
这是一份河南省安阳市滑县2023-2024学年九年级上学期1月期末数学试题,共4页。
这是一份河南省安阳市文峰区2023—2024学年九年级上学期1月期末数学试题,共4页。
这是一份河南省安阳市龙安区2023-2024学年九年级上学期期中数学试题(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
