|课件下载
搜索
    上传资料 赚现金
    28.1锐角三角函数2课件PPT01
    28.1锐角三角函数2课件PPT02
    28.1锐角三角函数2课件PPT03
    28.1锐角三角函数2课件PPT04
    28.1锐角三角函数2课件PPT05
    28.1锐角三角函数2课件PPT06
    28.1锐角三角函数2课件PPT07
    28.1锐角三角函数2课件PPT08
    还剩44页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年28.1 锐角三角函数示范课课件ppt

    展开
    这是一份2020-2021学年28.1 锐角三角函数示范课课件ppt,共52页。PPT课件主要包含了知识点一正弦的定义,知识点二正弦的应用,sinA,sinB,知识点一,正切的定义,∠A的余弦,cosA,∠A的邻边,∠A的正切等内容,欢迎下载使用。

    一、新课引入1、在Rt△ABC中,∠C=90°,AB=10,BC=6,则AC=________.2、在Rt△ABC中,∠C=90°,∠A=30°,AB=10cm,则BC= ,理由是 . .
    在直角三角形中,30°角所对的边等于斜边的一半
    初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义;
    能把实际中的数量关系表示为数学表达式.
    认真阅读课本第74至77页的内容,完成下面练习并体验知识点的形成过程.
    问题 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
    分析:问题转化为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB .
    根据“在直角三角形中,30°角所对的边等于斜边的一半”,即可得AB= = .即需要准备70m长的水管
    三、研读课文
    结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 .
    思考 任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,你能得出什么结论?
    解:∵在Rt△ABC,∠C=90°,∠A=45° ∴Rt△ABC是等腰三角形 根据勾股定理得, . ∴AB=___BC. 因此, =____=_______
    结论 在直角三角形中,如果一个锐角等于45°时,不管三角形的大小如何,这个角的对边与斜边的比值都等于________.
    探究 任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=α,那么有什么关系,你能解释一下吗?
    分析:由于∠C=∠C′=90°,∠A=∠A′=α,所以Rt△ABC∽Rt△A′B′C′, ,即
    三、研读课文
    结论 在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别记为a、b、c.我们把锐角A的对边与斜边的比叫做 ,记作 ,即: .当∠A=30°时,sinA=sin30°=______;当∠A=45°时,sinA=sin45°=______.
    练一练1、在Rt△ABC中,∠C为直角,AC=4,BC=3,则sinA=( ) A. ; B. ; C. ; D. .2、已知sinA= (∠A为锐角),则∠A= .
    例1 如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值
    解:如图1,在Rt△ABC中,AB=____因此 sinA= =____, sinB= =____.如图2,在Rt△ABC中,sinA= =____,AC=____因此sinB= =____.
    温馨提示:求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定 的对边与斜边的比.
    三、研读课文
    练一练 根据下图,求sinA和sinB的值.
    解:如图,在Rt△ABC中,因此 sinA= , sinB=
    1、锐角A的对边与斜边的比叫做 ,记作 .    
    3、学习反思 _______________________________________________
    2、sin30°=______; sin45°=______.
    1、在Rt△ABC中,∠C=90°,AB=10,sinA= ,则BC的长为_____.
    2、当锐角A>45°时,sinA的值( )A、小于 B、大于C、小于 D、大于
    3、在Rt△ABC中,∠C为直角,∠A=30°,AB=4,求sinB的值.
    解:∵在△ABC中,∠C为直角,∠A=30°,AB=4∴ ,∴∴sinB= = =
    28.1 锐角三角函数(2)
    1、一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值, y都有唯一确定的值与其对应,那么我们称y是x的________
    2、分别求出图中∠A,∠B的正弦值.
    会求解简单的锐角三角函数.
    认真阅读课本第77至78页的内容,完成下面练习并体验知识点的形成过程.
    1、在Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比就随之确定.此时,其他边之间的比是否也随之确定?为什么?
    2、在Rt△ABC中,∠C=90°,我们把∠A的邻边与斜边的比叫做____________________,记作______,即___________________=___; 把∠A的对边与邻边的比叫做___________, 记作________,即___________________=__.
    3、对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同样地,_____,______也是A的函数.
    4、锐角A的_______、_______、_______都叫做∠A的锐角三角函数.
    1、在Rt△ABC中,∠C为直角,a=1,b=2,则csA=________ ,tanA=_________.
    2、在Rt△ABC中,各边都扩大四倍,则锐角A的各三角函数值( )A.没有变化 B.分别扩大4倍C.分别缩小到原来的 D.不能确定
    例2 如图,在Rt△ABC中,∠C=90°,BC=6,sinA= ,求csA、tanB的值.
    解: ∵sinA=____
    又AC=____________=____________=8
    1、Rt△ABC中,∠C为直角,AC=5,BC=12,那么下列∠A的四个三角函数中正确的是( )
    A. sinA= ; B.sinA =
    C.tanA= ; D. csA=
    2、如图:P是∠的边OA上一点,且P点的坐标为(3,4),则cs α 、tan α 的值.
    1、在Rt△ABC中,∠C=90°,我们把∠A的邻边与斜边的比叫做____________________,记作______,即___________________=___; 把∠A的对边与邻边的比叫做___________, 记作________,即___________________=__.
    2、对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同样地,_____,______也是A的函数.
    3、锐角A的_______、_______、_______都叫做∠A的锐角三角函数.
    4、学习反思:_______________________________________________________________________
    1、Rt△ABC中,∠C=90°,如果AB=2,BC=1,那么csB的值为( )
    A、 B、 C、 D、
    2、在Rt∆ABC中,∠C=90°,如果cs A= 那么tanB的值为( )
    3、在∆ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有( )
    A 、b= a•tanA B、b= c•sinA
    C、 a= c•csB D、c= a•sinA
    4、已知在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,如果b=5a,那么∠A的正切值为________.
    5、如图,PA是圆O切线,A为切点,PO交圆O于点B,PA=8,OB=6,求tan∠APO的值.
    解:∵ PA是圆O的切线 ∴ PA⊥OA ∴ ∆POA是直角三角形 又∵ OA=OB ∴
    28.1 锐角三角函数(3)
    1、在Rt△ABC中,∠C=90°,csA= ,BC=10,则AB=_______,AC=_______,sinB=_______,△ABC的周长是______.2、2、在Rt△ABC中,∠C=90°,∠B=45°,则∠A=_____,设AB=K,则AC=_____,BC=_____,sinB= sin45°=____, csB =cs45°=____,tanB= tan45°=____.
    理解特殊角的三角函数值的由来;
    熟记30°,45°,60°的三角函数值
    根据一个特殊角的三角函数值说出这个角.
    知识点一 特殊角的三角函数值
    认真阅读课本第79至80页的内容,完成下面练习并体验知识点的形成过程.
    2、熟记特殊三角函数表:
    1、两块三角尺有____个不同的锐角?如果设每个三角尺较短的边长为1,则其余的 各是多少?
    1、在Rt△ABC中,∠C为直角,sinA= ,则csB的值是( ) A. ; B. ; C.1; D.2、在Rt△ABC中, 2sin(α+20°)= ,则锐角α的度数是( )A.60° B.80° C.40° D.以上结论都不对
    知识点二 利用特殊三角函数值进行简单计算
    例3 求下列各式的值: 温馨提示:
    知识点二利用特殊三角函数值进行简单计算
    解: (1)在图(1)中, ∠A=________(2)在图(2)中.∴α= _______
    温馨提示:当A,B,为锐角时,若A≠B,则sinA____sinB,csA___csB,tanA____tanB.
    练一练 计算:(1)2 cs45°; (2)1-2sin30°cs30°.
     1、熟记特殊三角函数表: 
    2、学习反思 _______________________________________________
    A.0°<α<30° B.60°<α<90C.45°<α<60° D.30°<α<45°.2、已知:Rt△ABC中,∠C=90°csA= ,AB=15,则AC的长是( ).A.3 B.6 C.9 D.12
    3、下列各式中不正确的是( ). A. B.sin30°+cs30°=1 C.sin35°=cs55° D.tan45°>sin45° 4、计算2sin30°-2cs60°+tan45°的结果是( ). A.2 B. C. D.1 5、在△ABC中,∠A、∠B都是锐角,且sinA= , csB= ,则△ABC的形状是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定
    6、在△ABC中,∠C为直角,不查表解下列问题:(1)已知a=5, ∠B=60°.求b;(2)已知a= ,b= ,求∠A.
    第二十八章 锐角三角函数 28.1 锐角三角函数(4)
    1、sin30°=__________;若csB= ,则∠B=_________.2、计算:
    进一步认识三角函数,体会函数的变化与对应的思想.
    会正确使用计算器,由已知锐角求出它的锐角三角函数值或已知锐角三角函数值求其相应的锐角;
    认真阅读课本第80至81页的内容,完成下面练习,并体验知识点的形成过程.
    阅读自己计算器的使用说明,懂得操作步骤.例 用计算器求下列锐角三角函数值:

    知识点一用计算器求下列锐角三角函数值
    sin18°=_________tan30°36=_______tan30.6°=_________
    练一练 用计算器求下列锐角三角函数值(保留四个有效数字).Sin57°=______ tan59°14′=_______
    0.309016994
    0.591398351
    已知下列锐角三角函数值,用计算器求其相应的锐角:已知sinA=0.5018,求∠A的度数.
    知识点二 根据已知锐角三角函数值用计算器求其相应的锐角
    你怎验算答案是否正确?
    依次按键 ,然后输入函数值0.5018,得到∠A=30.11915867°(这说明锐角A精确到1°的结果为30°)
    使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角。
    用计算器求下列各式中的锐角(精确到分).Sinα=0.536,α=_________csα=0.1842,α=_________
    1、我们可以用计算器求锐角三角函数值.2、已知下列锐角三角函数值,可以用计算器求其相应的锐角.
    3、学习反思:______________________ ______________________________________________________________________________
    1、下列各式中一定成立的是( )A.tan75°﹥tan48°﹥tan15° B. tan75°﹤tan48°﹤tan15°C. cs75°﹥cs48°﹥cs15° D. sin75°﹤sin48°﹥sin15°2、不查表,比较大小:(1)sin20.3°______sin20°15′;(2)cs51°______cs50°10′;(3)sin21°______cs68°.3、锐角α的正弦函数值随α的增大而____,锐角α的余弦函数值,随α的增大而_____
    4、利用计算器计算下列各式(精确到0.01):(1) (2)
    解:∵sin20° = 0.342
    cs20° = 0.940
    ∴sin20°cs20°=0.321≈0.32
    解:∵sin27° = 0.454
    5、sin0°=0,sin90°=1.利用计算器求sin57°与cs33° ,所得的值有什么关系?
    tan48° = 1.111
    ≈0.227+0.370=0.597≈0.60
    解:∵sin57°= 0.838670567945 cs33°= 0.838670567945
    ∴ sin57°= cs33°
    相关课件

    初中数学人教版九年级下册28.1 锐角三角函数优秀课件ppt: 这是一份初中数学人教版九年级下册28.1 锐角三角函数优秀课件ppt,共22页。PPT课件主要包含了解由勾股定理得等内容,欢迎下载使用。

    人教版九年级下册28.1 锐角三角函数精品课件ppt: 这是一份人教版九年级下册28.1 锐角三角函数精品课件ppt,共17页。PPT课件主要包含了仿照正弦的研究过程,余弦的概念等内容,欢迎下载使用。

    人教版九年级下册28.1 锐角三角函数教案配套ppt课件: 这是一份人教版九年级下册28.1 锐角三角函数教案配套ppt课件,共49页。PPT课件主要包含了例题示范,练一练,判断对错,情境探究,可以大于1吗,试一试,在Rt△ABC中,∠A的对边,∠A的邻边,tanA等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map