2020-2021学年高一(上)期末数学试卷
展开
这是一份2020-2021学年高一(上)期末数学试卷,共15页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
1. 已知集合M={x|−1cB.b>c>aC.c>a>bD.b>a>c
4. 函数f(x)=tan(x+π4)的单调增区间为( )
A.(kπ−π2,kπ+π2),k∈ZB.(2kπ−3π4,2kπ+π4).k∈Z
C.(kπ−3π4,kπ+π4),k∈ZD.(kπ−π4,kπ+3π4),k∈Z
5. 已知a0, a>1)和y=nxα(n>0, 01)B.应选y=mlgax(m>0, a>1)
C.应选y=nxα(n>0, 00)满足,g(π)=3,且最小正周期,则符合条件的ω的取值个数为________.
四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤
①角α的终边上有一点M(2, 4);②角α的终边与单位圆的交点在第一象限且横坐标为;③2α为锐角且.在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.
问题:已知角α的顶点在原点O,始边在x轴的非负半轴上,______.求的值.
已知集合A={x|x2−2x+m≤0},B={y|y=3x, x≤n}.
(1)若集合A为空集,求实数m的取值范围;
(2)当m=−8时,若“x∈A”是“x∈B”的必要不充分条件,求实数n的取值范围.
体育课上,小明进行一项趣味测试,在操场上从甲位置出发沿着同一跑道走到乙位置,有两种不同的行走方式(以下x1≠x2).
方式一:小明一半的时间以x1m/s的速度行走,剩余一半时间换为以x2m/s的速度行走,平均速度为;
方式二:小明一半的路程以x1m/s的速度行走,剩余一半路程换为以x2m/s的速度行走,平均速度为.
(1)试求两种行走方式的平均速度,;
(2)比较,的大小.
已知定义域为R的奇函数f(x),当x≥0时,f(x)=4x−m⋅3x−2,其中m是常数.
(1)当x0,ω>0,01且x≠2}.
【答案】
19%
【考点】
Venn图表达集合的关系及运算
【解析】
设有x%的学生既喜欢足球又喜欢游泳,则有(56−x)%只喜欢足球,有(38−x)%只喜欢游泳,列出方程能求出该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例.
【解答】
设有x%的学生既喜欢足球又喜欢游泳,
则有(56−x)%只喜欢足球,有(38−x)%只喜欢游泳,
由题意得:(56−x)%+x%+(38−x)%=75%,
解得x=19.
故该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是19%.
【答案】
x3
【考点】
函数解析式的求解及常用方法
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
5
【考点】
三角函数的周期性
【解析】
此题暂无解析
【解答】
此题暂无解答
四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤
【答案】
方案一:选条件①.
由题意可知,.
所以,.
所以==.
方案二:选条件②.
因为角α的终边与单位圆的交点在第一象限且横坐标为,
所以,.
所以,.
所以==.
方案三:选条件③.,
结合2α为锐角,解得,
所以,.
所以==.
【考点】
二倍角的三角函数
【解析】
选条件①.利用任意角的三角函数的定义可求csα,sinα的值,利用二倍角公式可求cs2α,sin2α的值,利用两角和的余弦公式即可计算求解;
选条件②.利用任意角的三角函数的定义可求csα,sinα的值,利用二倍角公式可求cs2α,sin2α的值,利用两角和的余弦公式即可计算求解;
选条件③.利用三角函数恒等变换的应用化简已知等式可得,进而可求,.利用两句话的余弦公式即可计算得解.
【解答】
方案一:选条件①.
由题意可知,.
所以,.
所以==.
方案二:选条件②.
因为角α的终边与单位圆的交点在第一象限且横坐标为,
所以,.
所以,.
所以==.
方案三:选条件③.,
结合2α为锐角,解得,
所以,.
所以==.
【答案】
解:(1)因为集合A为空集,所以Δ=4−4m1,即实数m的取值范围是{m|m>1}.
(2)当m=−4时,A={x|x2−2x−8≤0}={x|−2≤x≤4},
因为B={y|y=3x, x≤n}={y|01}.
(2)当m=−4时,A={x|x2−2x−8≤0}={x|−2≤x≤4},
因为B={y|y=3x, x≤n}={y|00,x6>0,且x1≠x2,所以,
即.
【考点】
根据实际问题选择函数类型
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
因为f(x)是定义在R上的奇函数,
所以f(0)=0,即46−m∗30−6=0,解得m=−1.
故当x≥6时,f(x)=4x+3x−6,
设x0−x+6−x−2,
而f(x)是奇函数,所以f(x)=−f(−x)=−4−x−3−x+2,
所以当x
相关试卷
这是一份2020-2021学年某校高一(上)期末考试数学试卷,共18页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年高一(上)期末数学试卷(B卷),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年高一(上)期末数学试卷 (1),共22页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。