专题17等腰三角形与直角三角形(共42题)-2021年中考数学真题分项汇编(原卷版)【全国通用】
展开
这是一份专题17等腰三角形与直角三角形(共42题)-2021年中考数学真题分项汇编(原卷版)【全国通用】,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).
A.正六边形的外角和大于正五边形的外角和B.正六边形的每一个内角为
C.有一个角是的三角形是等边三角形D.对角线相等的四边形是矩形
2.(2021·江苏扬州市·中考真题)如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是( )
A.2B.3C.4D.5
3.(2021·浙江宁波市·中考真题)如图,在中,于点D,.若E,F分别为,的中点,则的长为( )
A.B.C.1D.
4.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )
A.直角三角形斜边上的中线等于斜边的一半
B.等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合
C.若,则点B是线段AC的中点
D.三角形三条边的垂直平分线的交点叫做这个三角形的外心
5.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:(其中R为ABC的外接圆半径)成立.在ABC中,若∠A=75°,∠B=45°,c=4,则ABC的外接圆面积为( )
A.B.C.D.
6.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若.,则的值为( )
A.B.C.D.
7.(2021·四川凉山彝族自治州·中考真题)如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为( )
A.B.2C.D.
8.(2021·陕西中考真题)如图,在菱形中,,连接、,则的值为( )
A.B.C.D.
9.(2021·安徽中考真题)如图,在菱形ABCD中,,,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )
A.B.C.D.
10.(2021·四川乐山市·中考真题)如图,已知点是菱形的对角线延长线上一点,过点分别作、延长线的垂线,垂足分别为点、.若,,则的值为( )
A.B.C.2D.
11.(2021·浙江丽水市·中考真题)如图,在纸片中,,点分别在上,连结,将沿翻折,使点A的对应点F落在的延长线上,若平分,则的长为( )
A.B.C.D.
12.(2021·四川自贡市·中考真题)如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为( )
A.B.C.D.
13.(2021·云南中考真题)在中,,若,则的长是( )
A.B.C.60D.80
14.(2021·浙江金华市·中考真题)如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是( )
A.B.C.D.
15.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.过点作的垂线交小正方形对角线的延长线于点,连结,延长交于点.若,则的值为( )
A.B.C.D.
16.(2021·四川南充市·中考真题)如图,在矩形ABCD中,,,把边AB沿对角线BD平移,点,分别对应点A,B.给出下列结论:①顺次连接点,,C,D的图形是平行四边形;②点C到它关于直线的对称点的距离为48;③的最大值为15;④的最小值为.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
17.(2021·四川广元市·中考真题)如图,在中,,,点D是边的中点,点P是边上一个动点,连接,以为边在的下方作等边三角形,连接.则的最小值是( )
A.B.1C.D.
18.(2021·浙江绍兴市·中考真题)如图,菱形ABCD中,,点P从点B出发,沿折线方向移动,移动到点D停止.在形状的变化过程中,依次出现的特殊三角形是( )
A.直角三角形→等边三角形→等腰三角形→直角三角形
B.直角三角形→等腰三角形→直角三角形→等边三角形
C.直角三角形→等边三角形→直角三角形→等腰三角形
D.等腰三角形→等边三角形→直角三角形→等腰三角形
二、填空题
19.(2021·浙江绍兴市·中考真题)如图,在中,,,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则的度数是_______.
20.(2021·四川广安市·中考真题)如图,将三角形纸片折叠,使点、都与点重合,折痕分别为、.已知,,,则的长为_______.
21.(2021·江苏苏州市·中考真题)如图.在中,,.若,则______.
22.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(是正五边形的五个顶点),则图中的度数是_______度.
23.(2021·江苏扬州市·中考真题)如图,在中,点E在上,且平分,若,,则的面积为________.
24.(2021·云南中考真题)已知的三个顶点都是同一个正方形的顶点,的平分线与线段交于点D.若的一条边长为6,则点D到直线的距离为__________.
25.(2021·江苏南京市·中考真题)如图,在四边形中,.设,则______(用含的代数式表示).
26.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O)沿直径对折后,按图1分成六等份折叠得到图2,将图2沿虚线剪开,再将展开得到如图3的一个六角星.若,则的度数为______.
27.(2021·浙江金华市·中考真题)如图,菱形的边长为,,将该菱形沿AC方向平移得到四边形,交CD于点E,则点E到AC的距离为____________.
28.(2021·浙江绍兴市·中考真题)已知与在同一平面内,点C,D不重合,,,,则CD长为_______.
29.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,的半径为,P为AB边上一动点,过点P作的切线PQ,切点为Q,则PQ的最小值为________.
30.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中,则“奔跑者”两脚之间的跨度,即之间的距离是__________.
31.(2021·四川成都市·中考真题)如图,在矩形中,,点E,F分别在边上,且,按以下步骤操作:第一步,沿直线翻折,点A的对应点恰好落在对角线上,点B的对应点为,则线段的长为_______;第二步,分别在上取点M,N,沿直线继续翻折,使点F与点E重合,则线段的长为_______.
32.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是___________.
33.(2021·江苏宿迁市·中考真题)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.
三、解答题
34.(2021·浙江温州市·中考真题)如图与的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).
(1)选一个四边形画在图2中,使点为它的一个顶点,并画出将它向右平移3个单位后所得的图形.
(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.
35.(2021·浙江温州市·中考真题)如图,是的角平分线,在上取点,使.
(1)求证:.
(2)若,,求的度数.
36.(2021·浙江绍兴市·中考真题)如图,在中,,点D,E分別在边AB,AC上,,连结CD,BE.
(1)若,求,的度数.
(2)写出与之间的关系,并说明理由.
37.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从处测得该建筑物顶端的俯角为24°,继续向该建筑物方向水平飞行20米到达处,测得顶端的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:,,)
38.(2021·四川乐山市·中考真题)如图,已知,,与相交于点,求证:.
39.(2021·重庆中考真题)在等边中,, ,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.
图1 图2 图3
(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.
①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;
②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:;
(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当最小时,直接写出的面积.
40.(2021·浙江中考真题)已知在中,是的中点,是延长线上的一点,连结.
(1)如图1,若,求的长.
(2)过点作,交延长线于点,如图2所示.若,求证:.
(3)如图3,若,是否存在实数,当时,?若存在,请直接写出的值;若不存在,请说明理由.
41.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.
(1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;
(2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;
(3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;
(4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.
42.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;
(2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示)
②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,)
(3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留)
②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由.
相关试卷
这是一份初中数学中考复习 专题17等腰三角形与直角三角形(共42题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期),共72页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题17等腰三角形与直角三角形(共42题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】,文件包含专题17等腰三角形与直角三角形共42题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题17等腰三角形与直角三角形共42题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。
这是一份专题19矩形菱形正方形(共42题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】,文件包含专题19矩形菱形正方形共42题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题19矩形菱形正方形共42题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。