专题27数据的收集整理与描述(共58题)-2021年中考数学真题分项汇编(原卷版)【全国通用】
展开2021年中考数学真题分项汇编【全国通用】(第01期)
专题27数据的收集整理与描述(共58题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )
A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h
2.(2021·浙江温州市·中考真题)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有( )
A.45人 B.75人 C.120人 D.300人
3.(2021·湖南张家界市·中考真题)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是( )
A.总体是该校4000名学生的体重 B.个体是每一个学生
C.样本是抽取的400名学生的体重 D.样本容量是400
4.(2021·江西中考真题)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )
A.一线城市购买新能源汽车的用户最多
B.二线城市购买新能源汽车用户达37%
C.三四线城市购买新能源汽车用户达到11万
D.四线城市以下购买新能源汽车用户最少
5.(2021·山东聊城市·中考真题)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:
废旧电池数/节
4
5
6
7
8
人数/人
9
11
11
5
4
请根据学生收集到的废旧电池数,判断下列说法正确的是( )
A.样本为40名学生 B.众数是11节
C.中位数是6节 D.平均数是5.6节
6.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是( )
A.测得的最高体温为37.1℃
B.前3次测得的体温在下降
C.这组数据的众数是36.8
D.这组数据的中位数是36.6
7.(2021·黑龙江绥化市·中考真题)近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中两种支付方式都不使用的有10人,样本中仅使用种支付方式和仅使用种支付方式的员工支付金额(元)分布情况如下表:
支付金额(元)
仅使用
36人
18人
6人
仅使用
20人
28人
2人
下面有四个推断:
①根据样本数据估计,企业2000名员工中,同时使用两种支付方式的为800人;
②本次调查抽取的样本容量为200人;
③样本中仅使用种支付方式的员工,该月支付金额的中位数一定不超过1000元;
④样本中仅使用种支付方式的员工,该月支付金额的众数一定为1500元.
其中正确的是( )
A.①③ B.③④ C.①② D.②④
8.(2021·湖南常德市·中考真题)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是( )
A.②→③→①→④ B.③→④→①→②
C.①→②→④→③ D.②→④→③→①
9.(2021·四川广安市·中考真题)下列说法正确的是( )
A.为了了解全国中学生的心理健康情况,选择全面调查
B.在一组数据7,6,5,6,6,4,8中,众数和中位数都是6
C.“若是实数,则”是必然事件
D.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定
10.(2021·湖南衡阳市·中考真题)下列说法正确的是( )
A.为了解我国中学生课外阅读情况,应采取全面调查方式
B.某彩票的中奖机会是1%,买100张一定会中奖
C.从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是
D.某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人
11.(2021·云南中考真题)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:
下列判断正确的是( )
A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍
B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍
C.单独生产A型帐篷与单独生产D型帐篷的天数相等
D.每天单独生产C型帐篷的数量最多
12.(2021·湖北黄冈市·中考真题)高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是( )
A.样本容量为400 B.类型D所对应的扇形的圆心角为
C.类型C所占百分比为 D.类型B的人数为120人
13.(2021·湖南株洲市·中考真题)某月1日—10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是( )
A.1日—10日,甲的步数逐天增加
B.1日—6日,乙的步数逐天减少
C.第9日,甲、乙两人的步数正好相等
D.第11日,甲的步数不一定比乙的步数多
14.(2021·湖南邵阳市·中考真题)其社区针对5月30日前该社区居民接种新冠疫苗的情况开展了问卷调查,共收回6000份有效问卷.经统计,制成如下数据表格.
接种疫苗针数
0
1
2
3
人数
2100
2280
1320
300
小杰同学选择扇形统计图分析接种不同针数的居民人数所占总人数的百分比.下面是制作扇形统计图的步骤(顺序打乱):
①计算各部分扇形的圆心角分别为,,,.
②计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%.
③在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.
制作扇形统计图的步骤排序正确的是( )
A.②①③ B.①③② C.①②③ D.③①②
15.(2021·上海中考真题)商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适( )
A./包 B./包 C./包 D./包
16.(2021·河北中考真题)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中 “( )”应填的颜色是( )
A.蓝 B.粉
C.黄 D.红
17.(2021·广西柳州市·中考真题)以下调查中,最适合用来全面调查的是( )
A.调查柳江流域水质情况 B.了解全国中学生的心理健康状况
C.了解全班学生的身高情况 D.调查春节联欢晚会收视率
18.(2021·黑龙江大庆市·中考真题)小刚家2019年和2020年的家庭支出如下,已知2020年的总支出2019年的总支出增加了2成,则下列说法正确的是( )
A.2020年教育方面的支出是2019年教育方面的支出的1.4倍;
B.2020年衣食方面的支出比2019年衣食方面的支出增加了10%;
C.2020年总支出比2019年总支出增加了2%;
D.2020年其他方面的支出与2019年娱乐方面的支出相同.
二、填空题
19.(2021·湖南长沙市·中考真题)某学校组织了主题为“保护湘江,爱护家园”的手抄报作品征集活动.先从中随机抽取了部分作品,按,,,四个等级进行评价,然后根据统计结果绘制了如下两幅不完整的统计图.那么,此次抽取的作品中,等级为等的作品份数为______.
20.(2021·湖南张家界市·中考真题)如图是张家界市某周每天最高气温的折线统计图,则这7天的最高气温的中位数是______.
21.(2021·福建中考真题)某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是_________.
22.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)
23.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.
三、解答题
24.(2021·浙江温州市·中考真题)某校将学生体质健康测试成绩分为,,,四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)以下是两位同学关于抽样方案的对话:
小红:“我想随机柚取七年级男、女生各60人的成绩.”
小明:“我想随机柚取七、八、九年级男生各40人的成绩.”
根据右侧学校信息,请你简要评价小红、小明的抽样方案.
如果你来抽取120名学生的测试成绩,请给出抽样方案.
学校共有七、八、九三个年级学生近千人,各段人数相近,每段男、女生人数相当,
.....
(2)现将随机抽取的测试成绩整理并绘制成如下统计图,请求出这组数据的平均数、中位数和众数.
某校部分学生体质健康测试成绩统计图
25.(2021·云南中考真题)垃圾的分类回收不仅能够减少环境污染,美化家园,甚至能够变废为宝,节约能源,为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分),该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.
(1)以下三种抽样调查方案:
方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;
方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;
方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本,其中抽取的样最具有代表性和广泛性的一种抽样调查方案是_______(填写“方案一”、“方案二”或“方案三”);
(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)
样本容量
平均分
及格率
优秀率
最高分
最低分
100
83.59
95%
40%
100
52
分数段
频数
5
7
18
30
40
结合上述信息解答下列问题:
①样本数据的中位数所在分数段为__________;
②全校1565名学生,估计竞赛分数达到“优秀”的学生有________人.
26.(2021·浙江嘉兴市·中考真题)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据(不完整):
青少年视力健康标准
类别
视力
健康状况
视力
视力正常
4.9
轻度视力不良
视力
中度视力不良
视力
重度视力不良
根据以上信息,请解答:
(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别)的扇形圆心角度数和2020年初视力正常(类别)的人数.
(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?
(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.
27.(2021·四川乐山市·中考真题)某中学全校师生听取了“禁毒”宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展“我为禁毒献爱心”的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.
(1)求这组数据的平均数和众数;
(2)经调查,当学生身上的零花钱多于15元时,都到出零花钱的20%,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?
(3)捐款最多的两人将和另一个学校选出的两人组成一个“禁毒”知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.
28.(2021·四川自贡市·中考真题)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.
(1)本次抽样调查的样本容量是_________,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
29.(2021·浙江中考真题)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:.党史宣讲;.歌曲演唱;.校刊编撰;.诗歌创作等四个小组,团支部将各组人数情况制成了如下统计图表(不完整).
各组参加人数情况统计表:
小组类别
人数(人)
10
15
5
各组参加人数情况的扇形统计图:
根据统计图表中的信息,解答下列问题:
(1)求和的值;
(2)求扇形统计图中所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如表所示:
小组类别
平均用时(小时)
2.5
3
2
3
求这一周四个小组所有成员平均每人参与活动的时间.
30.(2021·浙江丽水市·中考真题)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成如下两幅不完整的统计图表,请根据图信息解答下列问题:
抽取的学生视力情况统计表
类别
检查结果
人数
A
正常
88
B
轻度近视
______
C
中度近视
59
D
重度近视
______
(1)求所抽取的学生总人数;
(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;
(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.
31.(2021·江苏扬州市·中考真题)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数分布扇形统计图
A.非常喜欢 B.比较喜欢 C.无所谓 D.不喜欢
抽样调查各类喜欢程度人数统计表
喜欢程度
人数
A.非常喜欢
50人
B.比较喜欢
m人
C.无所谓
n人
D.不喜欢
16人
根据以上信息,回答下列问题:
(1)本次调查的样本容量是______;
(2)扇形统计图中表示A程度的扇形圆心角为_____,统计表中______;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
32.(2021·浙江宁波市·中考真题)图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,观察图1、图2,解答下列向题:
(1)求该书店4月份的营业总额,并补全条形统计图.
(2)求5月份“党史”类书籍的营业额.
(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.
33.(2021·四川广元市·中考真题)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:
甲医院
乙医院
年龄段
频数
频率
频数
频率
18-29周岁
900
0.15
400
0.1
30-39周岁
a
0.25
1000
0.25
40-49周岁
2100
b
c
0.225
50-59周岁
1200
0.2
1200
0.3
60周岁以上
300
0.05
500
0.125
(1)根据上面图表信息,回答下列问题:
①填空:_________,_________,_________;
②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为_________;
(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.
34.(2021·江苏宿迁市·中考真题)某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计图表:
类别
A
B
C
D
年龄(t岁)
0≤t<15
15≤t<60
60≤t<65
t≥65
人数(万人)
4.7
11.6
m
2.7
根据以上信息解答下列问题:
(1)本次抽样调查,共调查了____万人;
(2)请计算统计表中的值以及扇形统计图中“C”对应的圆心角度数;
(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.
35.(2021·江苏连云港市·中考真题)端午节吃粽子是中华民族的传统习俗.某食品厂为了解市民对去年销量较好的A、B、C、D四种粽子的喜爱情况,在端午节前对某小区居民进行抽样调查(每人只选一种粽子),并将调查情况绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)补全条形统计图;
(2)扇形统计图中,D种粽子所在扇形的圆心角是______;
(3)这个小区有2500人,请你估计爱吃B种粽子的人数为______.
36.(2021·浙江绍兴市·中考真题)绍兴莲花落,又称“莲花乐”,“莲花闹”,是绍兴一带的曲艺.为了解学生对该曲种的熟悉度,某校设置了:非常了解、了解、了解很少、不了解四个选项,随机抽查了部分学生进行问卷调查,要求每名学生只选其中的一项,并将抽查结果绘制成如下不完整的统计图.
根据图中信息,解答下列问题:
(1)本次接受问卷调查的学生有多少人?并求图2中“了解”的扇形圆心角的度数.
(2)全校共有1200名学生,请你估计全校学生中“非常了解”、“了解”莲花落的学生共有多少人.
37.(2021·湖南岳阳市·中考真题)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间(单位:)进行了调查,将数据整理后得到下列不完整的统计图表:
组别
睡眠时间分组
频数
频率
4
0.08
8
0.16
10
21
0.42
0.14
请根据图表信息回答下列问题:
(1)频数分布表中,________,________;
(2)扇形统计图中,组所在扇形的圆心角的度数是________;
(3)请估算该校600名八年级学生中睡眠不足7小时的人数;
(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.
38.(2021·江苏苏州市·中考真题)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程.为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查.并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为______名.补全条形统计图(画图并标注相应数据);
(2)在扇形统计图中,选择“陶艺”课程的学生占______%;
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
39.(2021·湖南张家界市·中考真题)为了积极响应中共中央文明办关于“文明用餐”的倡议,某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分学生,对他们家庭用餐使用公筷情况进行统计,统计分类为以下四种:A(完全使用)、B(多数时间使用)、C(偶尔使用)、D(完全不使用),将数据进行整理后,绘制了两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)本次抽取的学生总人数共有_________.
(2)补全条形统计图;
(3)扇形统计图中A对应的扇形的圆心角度数是__________.
(4)为了了解少数学生完全不使用公筷的原因,学校决定从D组的学生中随机抽取两位进行回访,若D组中有3名男生,其余均为女生,请用列表法或画树状图的方法,求抽取的两位学生恰好是一男一女的概率.
40.(2021·海南中考真题)根据2021年5月11日国务院新闻办公室发布的《第七次全国人口普查公报》,就我国2020年每10万人中,拥有大学(指大专及以上)、高中(含中专)、初中、小学、其他等文化程度的人口(以上各种受教育程度的人包括各类学校的毕业生、肄业生和在校生)受教育情况数据,绘制了条形统计图(图1)和扇形统计图(图2).
根据统计图提供的信息,解答下列问题:
(1)______,_______;
(2)在第六次全国人口普查中,我国2010年每10万人中拥有大学文化程度的人数约为0.90万,则2020年每10万人中拥有大学文化程度的人数与2010年相比,增长率是______%(精确到);
(3)2020年海南省总人口约1008万人,每10万人中拥有大学文化程度的人数比全国每10万人中拥有大学文化程度的人数约少0.16万,那么全省拥有大学文化程度的人数约有______万(精确到1万).
41.(2021·甘肃武威市·中考真题)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
等级
成绩
(1)本次调查一共随机抽取了_________名学生的成绩,频数分布直方图中__________;
(2)补全学生成绩频数分布直方图;
(3)所抽取学生成绩的中位数落在________等级;
(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?
42.(2021·四川成都市·中考真题)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021-025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成如下不完整的统计图表.
课程
人数
篮球
m
足球
21
排球
30
乒乓球
n
根据图表信息,解答下列问题:
(1)分别求出表中m,n的值;
(2)求扇形统计图中“足球”对应的扇形圆心角的度数;
(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.
43.(2021·四川南充市·中考真题)某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率.
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生
自选项目
长跑
掷实心球
小红
95
90
95
小强
90
95
95
①补全条形统计图.
②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.
44.(2021·山东聊城市·中考真题)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:
请根据以上的信息,回答下列问题:
(1)抽取的学生有 人,n= ,a= ;
(2)补全条形统计图;
(3)若该校有学生3200人,估计参加书法社团活动的学生人数.
45.(2021·四川资阳市·中考真题)目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A(实时关注)、B(关注较多)、C(关注较少)、D(不关注)四类,现将调查结果绘制成如图所示的统计图.
请根据图中信息,解答下列问题:
(1)求C类职工所对应扇形的圆心角度数,并补全条形统计图;
(2)若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.
46.(2021·浙江杭州市·中考真题)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数直方图(每一组不含前一个边界值,含后一个边界值).
某校某年级360名学生一分钟跳绳次数的频数表
组别(次)
频数
100~130
48
130~160
96
160~190
a
190~220
72
(1)求的值.
(2)把频数直方图补充完整.
(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.
47.(2021·浙江台州市·中考真题)杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成如下统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率
组中值
频数(棵)
0≤x<10%
5%
12
10%≤x<20%
15%
4
20%≤x<30%
25%
2
30%≤x<40%
35%
1
40%≤x<50%
45%
1
乙组杨梅树落果率频数分布直方图
(1)甲、乙两组分别有几棵杨梅树的落果率低于20%?
(2)请用落果率的中位数或平均数,评价市农科所“用防雨布保护杨梅果实”的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
48.(2021·湖南怀化市·中考真题)某校开展了“禁毒”知识的宣传教育活动.为了解这次活动的效果,现随机抽取部分学生进行知识测试,并将所得数据绘制成如下不完整的统计图表:
等级
频数(人数)
频率
优秀
60
0.6
良好
a
0.25
合格
10
b
基本合格
5
0.05
合计
c
1
根据统计图表提供的信息,解答下列问题:
(1)a= ,b= ,c= ;
(2)补全条形统计图;
(3)该学校共有1600名学生,估计测试成绩等级在合格以上(包括合格)的学生约有多少人?
(4)在这次测试中,九年级(3)班的甲,乙、丙、丁四位同学的成绩均为“优秀”,现班主任准备从这四名同学中随机选取两名同学出一期“禁毒”知识的黑板报,请用列表法成画树状图法求甲、乙两名同学同时被选中的概率.
49.(2021·湖南株洲市·中考真题)目前,国际上常用身体质量指数“”作为衡量人体健康状况的一个指标,其计算公式:( 表示体重,单位:千克;表示身高,单位:米).已知某区域成人的数值标准为:为瘦弱(不健康): 为偏瘦;为正常;为偏胖; 为肥胖(不健康).某研究人员从该区域的一体检中心随机抽取55名成人的体重、身高数据组成一个样本,计算每名成人的数值后统计如下:
身体属性
人数
瘦弱
2
偏瘦
2
正常
11
偏胖
9
肥胖
(男性身体属性与人数统计表)
(1)求这个样本中身体属性为“正常”的人数;
(2)某女性的体重为51.2千克,身高为1.6米,求该女性的数值;
(3)当且(、为正整数)时,求这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值.
50.(2021·新疆中考真题)某校为了增强学生的疫情防控意识.组织全校2000名学生进行了疫情防控知识竞赛.从中随机抽取了n名学生的竞赛成绩(满分100分),分成四组:A:;B:;C:;D:,并绘制出如下不完整的统计图:
(1)填空:n=______;
(2)补全频数分布直方图;
(3)抽取的这n名学生成绩的中位数落在 组;
(4)若规定学生成绩为优秀.估算全校成绩达到优秀的人数.
51.(2021·湖南永州市·中考真题)为庆祝中国共产党成立100周年,某校组织全校学生进行了一场党史知识竞赛活动根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.
200名学生党史知识竞赛成绩的频数表
组别
频数
频率
A组
a
0.3
B组
30
0.15
C组
50
b
D组
60
0.3
200名学生党史知识竞赛成绩的频数直方图
请结合图表解决下列问题:
(1)频数表中,_________,___________;
(2)请将频数直方图补充完整;
(3)抽取的200名学生中竞赛成绩的中位数落在的组别是__________组;
(4)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数.
52.(2021·湖南娄底市·中考真题)“读书,点亮未来”,广泛的课外阅读是同学们搜集和汲取知识的一条重要途径.学校图书馆计划购进一批学生喜欢的图书,为了了解学生们对“A文史类、B科普类、C生活类、D其它”的喜欢程度,随机抽取了部分学生进行问卷调查(每个学生只选其中一类),将所得数据进行分类统计绘制了如下不完整的统计图表,请根据图中的信息,解答下列问题:
统计表:
频数
频率
A历史类
50
m
B科普类
900
0.45
C生活类
n
0.20
D其它
20
0.10
合计
(1)本次调查的学生共_______人;
(2)_______,_______;
(3)补全条形统计图.
53.(2021·黑龙江齐齐哈尔市·中考真题)某中学数学兴趣小组为了解本校学生对A:新闻、B:体育、C:动画、D:娱乐、E:戏曲五类电视节目的喜爱情况,随机抽取了部分学生进行调查(被调查的学生只选一类并且没有不选的),并将调查结果绘制成如图所示的不完整的条形图和扇形图.请根据图中所给出的信息解答下列问题:
(1)本次抽样调查的样本容量是__________;
(2)请补全条形图;
(3)扇形图中,_________,节目类型E对应的扇形圆心角的度数是__________;
(4)若该中学有1800名学生,那么该校喜欢新闻类节目的学生大约有多少人?
54.(2021·湖北荆州市·中考真题)高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野,……为了解学生寒假阅读情况.开学初学校进行了问卷调查,并对部分学生假期(24天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为(小时),阅读总时间分为四个类别:,,,,将分类结果制成如下两幅统计图(尚不完整).
根据以上信息,回答下列问题:
(1)本次抽样的样本容量为__________;
(2)补全条形统计图;
(3)扇形统计图中的值为__________,圆心角的度数为__________;
(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.
55.(2021·湖北宜昌市·中考真题)国家规定“中小学生每天在校体育活动时间不低于”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
组: 组:
组: 组:
请根据上述信息解答下列问题:
(1)本次调查的人数是____________人;
(2)请根据题中的信息补全频数分布直方图;
(3)组对应扇形的圆心角为__________;
(4)本次调查数据的中位数落在__________组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
56.(2021·湖南常德市·中考真题)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种,图1与图2是根据此次调查得到的统计图(不完整).
请根据统计图回答下列问题.
(1)此次抽样调查的人数是多少人?
(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?
(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.
(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.
57.(2021·四川达州市·中考真题)为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动.为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)这次抽样调查的总人数为__________人,扇形统计图中“舞蹈”对应的圆心角度数为_________;
(2)若该校有1400名学生,估计选择参加书法的有多少人?
(3))学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.
58.(2021·湖北十堰市·中考真题)为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A、B、C、D四个等级,并绘制了如下不完整的统计表和统计图.
等级
成绩(x)
人数
A
15
B
a
C
18
D
7
根据图表信息,回答下列问题:
(1)表中__________;扇形统计图中,C等级所占的百分比是_________;D等级对应的扇形圆心角为________度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有_______人.
(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率
专题27 概率(共50题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题27 概率(共50题)--2023年中考数学真题分项汇编(全国通用),文件包含专题概率共50题解析版pdf、专题概率共50题学生版pdf等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
专题27 概率(共50题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题27 概率(共50题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题27概率共50题原卷版docx、专题27概率共50题解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
专题27 概率(共50题)-2023年中考数学真题分项汇编(全国通用): 这是一份专题27 概率(共50题)-2023年中考数学真题分项汇编(全国通用),文件包含专题27概率共50题原卷版docx、专题27概率共50题解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。