
浙教版八年级上册2.6 直角三角形教案及反思
展开
这是一份浙教版八年级上册2.6 直角三角形教案及反思,共2页。教案主要包含了巧设情境,设疑引入,运用性质,归类探究等内容,欢迎下载使用。
教学目标
知识目标:通过复习过程,使学生进一步理解折叠问题的本质是图形的轴对称变换,会利用轴对称变换的性质进行有关的计算和证明。培养学生运用知识的能力。
能力目标:能运用转化的数学思想方法解决问题,提高解题的灵活性,并学会归纳总结解题方法。
情感目标:通过学生动手操作, 激发学生学习的兴趣,培养学生的自主学习的能力,让学生主动参与到学习探索的过程中来,加强其进一步学习的自信心。
教学重点
通过动手操作,应用轴对称性解决折叠问题。
教学难点
学生通过折叠自己进行解题过程较难,思维不易发散
设计亮点
教学过程
备 注
一、巧设情境,设疑引入
通过对特殊三角形一章的学习我们对直角三角形已经有了一定的认识和了解。今天我们继续探讨和直角三角形有关的折叠问题。
【动动手,动动脑】:如图操作,折叠直角三角形纸片,
使点C落在AB上的点E处.
(1)你能找出其中全等的三角形吗?△ADC≌△ADE
(2)图中有哪些有相等的角和相等的线段?
(3)图中的对称轴是哪条线段所在的直线?
从操作中不难看出,折叠操作“折”是过程,
“叠”是结果。但是,折叠问题不能只靠动手操作
来解决,我们必须透过现象看本质.那么折叠的本质又是什么呢?
学生归纳:折叠问题的实质是图形的轴对称变换。利用轴对称变换得到对应的角相等和对应的线段相等。
二、运用性质,归类探究
【归类一】:求角的度数
例1:如图,折叠直角三角形纸片,使点C落在AB上的点E处.已知∠B=30°,
∠C=90°,则∠BAD= ,∠ADE=
解:(教师板书解答过程)
点评:利用折叠的本质求角的度数,当条件中有某些角的度数已知时,综合题中的其他条件,找已知角和未知角之间的关系,从而求得未知角的度数。
若条件中没有任何一个角的度数已知时,该怎样思考呢?
体验感悟:(1)如图:在Rt△ABC中,∠ACB=90°,∠A
相关教案
这是一份八年级上册2.8 直角三角形全等的判定教学设计,共4页。教案主要包含了总结,作业布置等内容,欢迎下载使用。
这是一份初中浙教版5.2 函数教学设计,共2页。教案主要包含了合作学习,函数的概念,函数的三种表示方法,知识整理,布置作业等内容,欢迎下载使用。
这是一份2020-2021学年5.2 函数教学设计,共10页。教案主要包含了创设情境,探究归纳,实践应用,交流反思,检测反馈,作业布置等内容,欢迎下载使用。
