终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)

    立即下载
    加入资料篮
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第1页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第2页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第3页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第4页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第5页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第6页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第7页
    浙教初中数学九下《2.3 三角形的内切圆》PPT课件 (3)第8页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册2.3 三角形的内切圆教学演示课件ppt

    展开

    这是一份数学九年级下册2.3 三角形的内切圆教学演示课件ppt,共30页。PPT课件主要包含了O就是所求的圆,巩固练习,a+b-c,三边的距离相等,想一想,比一比看谁做得快,腰长和中位线长相等,开动脑筋,学生归纳小结等内容,欢迎下载使用。
    提出问题:从一块三角形的材料上截下一块圆形的用料,怎样才能使圆的面积尽可能最大呢?
    作圆: 使它和已知三角形的各边都相切
    已知:△ABC求作:和△ABC的各边都相切的圆
    2、和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形。
    概念;1、和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
    想一想:根据作法,和三角形各边都 相切的圆能作出几个?
    1、什么是三角形的外接圆与内切圆?2、如何画出一个三角形的外接圆与内切圆?
    画圆的关键:1、确定圆心 2、确定半径
    三角形的外接圆的圆心是各边垂直平分线的交点;其半径是交点到顶点的距离。
    三角形的内切圆的圆心是各内角平分线的交点;其半径是交点到一边的距离。
    三角形的外接圆与内切圆
    ①经过三角形各顶点的圆叫三角形的外接圆。 ②与三角形各边都相切的圆叫三角形的内切圆。
    例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DE=DB
    练习 分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内.
    2、如图,菱形ABCD中,周长为40,∠ABC=120°,则内切圆的半径为( )
    3、如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=( )
    (A)70° (B)110° (C)120° (D)130°
    例:已知:点I是△ABC的内心,AI交BC于D,交外接圆于E。求证:EB=EI=EC
    证明: 连结BI ∵I是△ABC的内心 ∴∠3=∠4 ∵ ∠ 1= ∠ 2, ∠ 2= ∠ 5 ∴ ∠ 1= ∠ 5 ∴ ∠ 1+ ∠ 3= ∠ 4+ ∠ 5 ∴ ∠ BIE= ∠ IBE ∴ EB=EI 又 ∵EB=EC ∴EB=EI=EC
    达标检测一、判断。1、三角形的外心到三角形各边的距离相等。 ( )2、直角三角形的外心是斜边的中点。 ( )二、填空:1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆 半径————,内切圆半径————。2、等边三角形外接圆半径与内切圆半径之比————。三、选择题:下列命题正确的是( )A、三角形外心到三边距离相等B、三角形的内心不一定在三角形的内部C、等边三角形的内心、外心重合D、三角形一定有一个外切圆
    4、等边三角形的内切圆半径、外接圆的半径和高的比为( )
    5、存在内切圆和外接圆的四边形一定是( )
    (A)矩形(B)菱形 (C)正方形 (D)平行四边形
    1、如图,△ABC中,∠A=55度,I是内心 则,∠BIC=————度。
    2、如图,△ABC中,∠A=55度,其内切圆切△ABC 于D、E、F,则∠FDE=————度。
    三、特殊三角形外接圆、内切圆半径的求法:
    直角三角形外接圆、内切圆半径的求法
    例:已知:点I是△ABC的内心,AI交BC于D,交外接圆于E。求证:EB=EI=EC
    课堂练习:1、判断(1)三角形的外心是三边中垂线的交点。( )(2)三角形三边中线的交点是三角形内心。( )(3)若O为△ABC的内心, 则OA=OB=OC。( )
    三个内角的角平分线的交点
    提示:关键是利用内心的性质
    如果∠ A=120 ° ,∠ BOC=?
    如果∠ A=n ° , ∠ BOC=?
    例1、如图,在△ABC中, ∠A=55 ° ,点O是外心,求∠ BOC的度数。
    如果∠ A=120 °呢?
    例2、如图:点I是△ABC的内心,AI交边BC于点D,交△ABC外接圆于点E.求证:BE=IE
    提示:欲证BE=IE 需证∠ BIE= ∠ IBE把∠ BIE转化为两圆周角之和
    若已知圆的三条切线呢?
    设△ABC的BC=a,CA=b,AB=c,内切圆I和BC、AC、AB分别相切于点D、E、F
    y+z=ax+z=bx+y=c
    分析:设 AF=x,BD=y,CE=z
    圆的外切四边形具有什么性质?
    圆的外切四边形的两组对边的和相等。
    例:等腰梯形各边都与⊙O相切, ⊙O的直径为6cm,等腰梯形的腰等于8cm,则梯形的面积为_____。
    若已知圆的四条切线呢?
    如图:四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于点L、M、N、P。
    根据已知条件可以得出什么结论?
    例:已知在△ABC中,BC=14cm,AC=9cm,AB=13cm,它的内切圆分别和BC、AC、 AB切于点D、E、F,求AF、BD和CE的长。
    已知:在△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。
    (2)如图,Δ ABC的内切圆分别和BC,AC,AB切于D,E,F;如果AF=2cm,BD=7cm,CE=4cm,则BC= cm,AC= AB=
    (3)如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8CM,则Δ PDE的周长为( )
    例:直角三角形的两直角边分别是5cm, 12cm 则其内切圆的半径为______。
    圆的外切等腰梯形有什么特点?
    圆的外切平行四边形有什么特点?
    圆的外切平行四边形是菱形
    课堂练习:练习册69 2 (1)(2)
    1、三角形内切圆的作法2、三角形的内切圆,内心,圆外切三角形的概念。3、利用三角形的内心的性质证解有关问题。
    课后作业: 书102-102 10、11、12 B组题 3
    练习2 已知:△ABC是⊙O外切三形,切点为D,E,F。若BC=14 cm ,AC=9cm,AB=13cm。求AF,BD,CE。
    x+y=13y+z=14x+z=9
    圆的外切四边形的两组对边和相等。
    已知:四边形ABCD的边 AB,BC,CD,DA和圆O分别相切于L,M,N,P。探索圆外切四边形边的关系。
    求证:圆的外切四边形的两组对边的和相等.
    已知:四边形ABCD是⊙O的外切四边形,切点分别是点P、L、M、N。
    求证:AB+CD=AD+BC
    证明:∵四边形ABCD是⊙O的外切四边形, 切点分别是点P、L、M、N。
    ∴AL=AP, BL=BM, CN=CM,DN=DP
    ∴AL+BL+CN+DN=AP+BM+CM+DP
    即 AB+CD=AD+BC

    相关课件

    数学九年级下册2.3 三角形的内切圆图片课件ppt:

    这是一份数学九年级下册2.3 三角形的内切圆图片课件ppt,共25页。PPT课件主要包含了直线与圆的位置关系,做一做,练一练,直线和圆的位置关系,旧知回顾,新课引入,知识要点,几何语言表示,例题分析,课内练习等内容,欢迎下载使用。

    初中数学浙教版九年级下册2.3 三角形的内切圆课文课件ppt:

    这是一份初中数学浙教版九年级下册2.3 三角形的内切圆课文课件ppt,共20页。PPT课件主要包含了课前练兵,三角形的内切圆,内切圆,BAC,140º,ABC,ACB,探讨1等内容,欢迎下载使用。

    数学九年级下册第二章 直线与圆的位置关系2.3 三角形的内切圆示范课ppt课件:

    这是一份数学九年级下册第二章 直线与圆的位置关系2.3 三角形的内切圆示范课ppt课件,共24页。PPT课件主要包含了三角形的内切圆,重点内容,三角形的各种心,三角形的外接圆,圆和圆的位置关系,热身训练,dR+r,dR-r,两个圆有两个公共点,R-rdR+r等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map