初中苏科版2.5 直线与圆的位置关系教案及反思
展开直线与圆的位置关系
教学目标:1.会过圆上一点画圆的切线; 2.会作三角形的内切圆; 3.理解三角形内切圆的有关概念; 4.通过探究作三角形的内切圆的过程,归纳内心的性质,进一步提高学生的归纳和作图的能力. | |
教学重点:掌握三角形内切圆的画法、理解三角形内切圆的有关概念. 教学难点:作已知三角形的内切圆. | |
复习引入 1.如图是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下来的圆的面积尽可能大?
2.你发现这个圆有什么特征? 实践探索一:三角形的内切圆的概念 1.三角形内切圆的定义:与三角形各边都相切的圆叫做三角形的内切圆,这个三角形叫做圆的外切三角形.
2.对照上图,说说其中的内切圆和外切三角形. 实践探索二:三角形的内切圆性质 操作探究: 1.作三角形的内切圆: 已知:△ABC. 求作:⊙O,使它与△ABC的3边 都相切. 作法:1.作∠ABC、∠ACB的平分线BM和CN,交点为I. 2.过点I作ID⊥BC,垂足为D. 3.以I为圆心,ID为半径作⊙I, ⊙I就是所求的圆. 2.内心的概念:三角形内切圆的圆心叫做三角形的内心. 3.请你思考一下:内心有哪些性质? 例题讲解 例1 如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠B=60°,∠C=70°,求∠EDF的度数.
2.拓展:∠A与∠EDF有什么关系? 例2 已知:点I是△ABC的内心,AI的延长线交外接圆于D.则DB与DI相等吗?为什么?
练一练 1.下列说法中,正确的是( ). A.垂直于半径的直线一定是这个圆的切线; B.圆有且只有一个外切三角形; C.三角形有且只有一个内切圆; D.三角形的内心到三角形的3个顶点的距离相等. 2.如图,⊙I切△ABC的边分别为D、E、F,∠B=80°,∠C=60°,M是上的动点(与D、E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.
总结 1.这节课你有哪些收获和困惑? 2.三角形的内心和外心有什么区别与联系? 课后作业 课本P70第1、2. 教后记
| |
初中数学苏科版九年级上册2.5 直线与圆的位置关系教案设计: 这是一份初中数学苏科版九年级上册2.5 直线与圆的位置关系教案设计,共4页。教案主要包含了教学目标,教学重,教学过程,回顾与反思等内容,欢迎下载使用。
数学九年级上册2.5 直线与圆的位置关系教学设计: 这是一份数学九年级上册2.5 直线与圆的位置关系教学设计,共3页。
苏科版九年级上册2.5 直线与圆的位置关系教案: 这是一份苏科版九年级上册2.5 直线与圆的位置关系教案,共2页。教案主要包含了教学目的,教学重点,教学过程等内容,欢迎下载使用。