初中数学沪科版七年级下册7.2 一元一次不等式教案及反思
展开《一元一次方程》
学习目标:
1、知道一元一次不等式的概念.
2、会解一元一次不等式.
学习重、难点:
一元一次不等式的解法.
学习过程:
一、学前准备:
观察下列含有未知数的不等式,它们有什么共同点?
(1)x>-2
(2)3y+1.25<5
(3)≤
二、进入主题:
一元一次不等式的定义和解法:
(1)不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.其标准形式:ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).
(2)解一元一次不等式的一般步骤:
例:解不等式
解:去分母, 得 (不要漏乘哦!每一项都得乘)
去括号, 得 (注意符号,不要漏乘!)
移 项, 得 (移项要变号)
合并同类项, 得 (计算要正确)
系数化为1, 得 (同除负,不等号方向要改变,分子分母别颠倒了)
(3)根据实际问题列不等式并求解,主要有以下环节:
①审题,找出不等关系;②设未知数;③列出不等式;④求出不等式的解集;⑤找出符合题意的值;⑥作答.
(4)不等式的解集在实数轴上的表示.
例题:
1.解不等式3x+26<8,并把它的解集在数轴上表示出来.
2.解不等式,并把它的解集在数轴上表示出来.
三、规律总结:
在解不等式时,应注意以下问题:
1.两边同时乘以一个数时,不能漏乘一些项.
2.分数线有括号的作用,去分母时,应用括号将分子上的多项式括起来.
3.系数化为1时,若两边乘(或除以)同一个负数,则不等号的方向要改变.
4.在数轴上表示不等式解集时要注意“实心点”与“空心圈”的区别.
挑战自我:
已知适合不等式的x的值是正数,你能确定实数a的范围吗?
跟踪练习:
解下列不等式:
3(x+4) <2(x-1)
2020-2021学年第7章 一元一次不等式和不等式组7.3 一元一次不等式组教学设计: 这是一份2020-2021学年第7章 一元一次不等式和不等式组7.3 一元一次不等式组教学设计,共4页。教案主要包含了复习引入,讲授新知,例题讲解,课堂练习,总结升华,强化训练等内容,欢迎下载使用。
2020-2021学年第7章 一元一次不等式和不等式组7.2 一元一次不等式教案: 这是一份2020-2021学年第7章 一元一次不等式和不等式组7.2 一元一次不等式教案,共2页。教案主要包含了复习旧知,引入新课,合作交流,探求新知,课内练习,小结,作业等内容,欢迎下载使用。
数学七年级下册7.2 一元一次不等式教案设计: 这是一份数学七年级下册7.2 一元一次不等式教案设计,共2页。