初中数学沪科版七年级下册10.1 相交线教学设计
展开
这是一份初中数学沪科版七年级下册10.1 相交线教学设计,共2页。
《相交线》教学目标:理解相交线的定义、对顶角的定义和性质,理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;知识要点:(一)相交线1. 相交线的定义在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点.如图1所示,直线AB与直线CD相交于点O. 图1 图2 图32. 对顶角的定义若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角.如图2所示,∠1与∠3、∠2与∠4都是对顶角.注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3)两条相交线形成2对对顶角.3. 对顶角的性质对顶角相等.(二)垂线1. 垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 图4如图4所示,直线AB与CD互相垂直,垂足为点O,则记作AB⊥CD于点O.其中“⊥”是“垂直”的记号;是图形中“垂直”(直角)的标记.注意:垂线的定义有以下两层含义:(1)∵AB⊥CD(已知) (2)∵∠1=90°(已知) ∴∠1=90°(垂线的定义) ∴AB⊥CD(垂线的定义)2. 垂线的性质(1)性质1:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直,即过一点有且只有一条直线与已知直线垂直.(2)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.即垂线段最短.3. 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 图5 图6如图5所示,m 的垂线段PB 的长度叫做点P 到 直线m 的距离.4. 垂线的画法(工具:三角板或量角器)5. 画已知线段或射线的垂线.(1)垂足在线段或射线上.(2)垂足在线段的延长线或射线的反向延长线上.范例:判断下列语句是否正确,如果是错误的,说明理由.(1)过直线外一点画直线的垂线,垂线的长度叫做这个点到这条直线的距离;(2)从直线外一点到直线的垂线段,叫做这个点到这条直线的距离;(3)两条直线相交,若有一组对顶角互补,则这两条直线互相垂直.分析:本题考查学生对基本概念的理解是否清晰.(1)、(2)都是对点到直线的距离的描述,由“直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”可判断(1)、(2)都是错的;由对顶角相等且互补易知,这两个角都是90°,故(3)正确;同一平面内,两条直线的位置关系是相交或平行,必须强调“在同一平面内”.解答:(1)这种说法是错误的.因为垂线是直线,它的长度不能度量,应改为“垂线段的长度叫做点到直线的距离”.(2)这种说法是错误的.因为“点到直线的距离”不是指点到直线的垂线段的本身,而是指垂线段的长度.(3)这种说法是正确的.
相关教案
这是一份初中数学沪科版七年级下册10.1 相交线教案设计,共2页。
这是一份2020-2021学年10.4 平移教案设计,共2页。教案主要包含了创设情境 引入课题,自主活动 实践感知,巩固练习 继续探究,归纳小结等内容,欢迎下载使用。
这是一份初中数学沪科版七年级下册10.1 相交线教学设计及反思,共8页。教案主要包含了教学目标,教学重点,对话设计,教学难点等内容,欢迎下载使用。