数学18.1 勾股定理教学设计及反思
展开1.了解勾股定理的证明,掌握勾股定理的内容,初步会用它进行有关的作图、计算、证明.
2.通过勾股定理的应用,培养方程的思想和逻辑推理能力.
3.对比介绍我国古代和西方数学家关于勾股定理的研究,对学生进行爱国主义教育.
教学重点与难点
重点是勾股定理的应用;难点是勾股定理的证明及应用.
教学过程设计
一、激发兴趣引入课题
通过介绍我国数学家华罗庚的建议——向宇宙发射勾股定理的图形与外星人联系,并说明勾股定理是我国古代数学家于2000年前就发现了的,激发学生对勾股定理的兴趣和自豪感,引入课题.
二、勾股定理的探索,证明过程及命名
1.猜想结论.
勾股定理叙述的内容是什么呢?请同学们也体验一下数学家发现新知识的乐趣.
教师用计算机演示:
(1)在△ABC中,∠A,∠B,∠C所对边分别为a,b和 c, ∠ACB= 90°,使△ABC运动起来,但始终保持∠ACB=90°,如拖动 A点或B点改变a ,b的长度来拖动AB边绕任一点旋转△ACB等.
(2)在以上过程中,始终测算a2,b2,c2,各取以上典型运动的某一两个状态的测算值(约7~8个)列成表格,让学生观察三个数之间有何数量关系,得出猜想.
(3)对比显示锐角三角形、钝角三角形的三边的平方不存在这种关系,因此它是直角三角形所特有的性质.让学生用语言来叙述他的猜想,画图及写出已知、求证.
2.证明猜想.
目前世界上可以查到的证明勾股定理的方法有几百种,连美国第20届总统加菲尔德于1881年也提供了一面积证法(见课本第109页图(4)),而我国古代数学家利用割补、拼接图形计算面积的思路提供了很多种证明方法,下面咱们采纳其中一种(教师制作教具演示,见如图3-151)来进行证明.
3.勾股定理的命名.
我国称这个结论为“勾股定理”,西方称它为“毕达哥拉斯定理”,为什么呢?
(1)介绍《周髀算经》中对勾股定理的记载;
(2)介绍西方毕达哥拉斯于公元前582~493时期发现了勾股定理;
(3)对比以上事实对学生进行爱国主义教育,激励他们奋发向上.
三、勾股定理的应用
1.已知直角三角形任两边求第三边.
例 1在 Rt△ABC中,∠C= 90°,∠A,∠B,∠C所对边分别为a,b,c.
(1)a= 6,b=8求c及斜边上的高;(2)a=40,c=41,求 b;(3)b=15 ,=25求 a;(4)a:b=3:4,c=15,求b.
说明:对于(1),让学生总结基本图形(图3-153)中利用面积求斜边上高的基本方法;对于(4),引导学生利用方程的思想来解决问题.
教师板书(1),(4)的规范过程,让学生练习(2),(3).
例2求图3-152所示(单位mm)矩形零件上两孔中心A和B的距离(精确到0.lmm).
教师就如何根据图纸上尺寸寻找直角三角形ABC中的已知条件,出示投影.
练习 1投影显示: (1)在等腰 Rt△ABC中, ∠C=90°, AC:BC:AB=__________;
(2)如图 3- 153 ∠ACB =90°,∠A= 30°,则BC:AC:AB=__________;若AB=8,则AC=_____________;又若CD⊥AB,则CD=______________.
(3)等边出△ABC的边长为 a,则高AD=__________,
S △ABC=______________
说明:(1)学会利用方程的思想来解决问题.
(2)通过此题让学生总结并熟悉几个基本图形中的常用论:①等腰直角三角形三边比为1:1:;
②含30°角的直角三角形三边之比为1::2;
③边长为a的等边三角形的高为a,面积为
板书)例 3 如图 3-154, AB=AC=20, BC=32,△DAC= 90°.求 BD的长.
分析:(1)分解基本图形,图中有等腰△ABC和
Rt△ADC;
(2)添辅助线——等腰△ABC底边上的高
AE,同时它也是Rt△ADC斜边上的高;
(3)设BD为X.利用图3-153中的基本关系,
通过列方程来解决.教师板书详细过程.
解 作AE⊥BC于E.设BD为x,则DE=16-x,AE2=AC2-EC2.又AD2=DE2+AE2=DC2-AC2,将上式代入,得DE2+AC2-EC2=DC2-AC2,即2AC2=DC2+EC2-DE2.
∴2×202=(32-x)2+162-(16-x)2,解得x=7.
初中数学沪科版八年级下册18.2 勾股定理的逆定理教案: 这是一份初中数学沪科版八年级下册18.2 勾股定理的逆定理教案,共2页。
初中数学沪科版八年级下册18.1 勾股定理教学设计及反思: 这是一份初中数学沪科版八年级下册18.1 勾股定理教学设计及反思,共4页。教案主要包含了【定向导学·互动展示】等内容,欢迎下载使用。
初中沪科版18.1 勾股定理教学设计及反思: 这是一份初中沪科版18.1 勾股定理教学设计及反思,共1页。