沪科版八年级下册19.2 平行四边形教案设计
展开(一)知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理1及性质定理2;
3、理解两条平行线的距离的概念;
4、培养学生综合运用知识的能力
(二)过程与方法 经历探索平行四边形的有关概念和性质的过程, 发展学生的探究意识和合情推理的能力。
(三)情感态度与价值观培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
难点:运用平行四边形的性质进行有关的论证和计算.
教学过程
第一步:导入课题:
引入:
在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?
复习:
1、什么是四边形?四边形的一组对边有怎样的位置关系?
2、一般四边形有哪些性质?
第二步:探究新知;
【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
已知:如图平行四边形ABCD,
求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:作平行四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.
(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)
证明:略
总结:
1、平行四边形的定义:
(1)定义: 两组对边分别平行的四边形叫做平行四边形。
(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(4)平行四边形的表示:用 表示,如 ABCD
2、平行四边形的性质
(1)共性:具有一般四边形的性质
(2)特性:(板书)
角 平行四边形的对角相等
边 平行四边形的对边相等
推论 夹在两条平行线间的平行线段相等
注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.
3、两条平行线的距离(定义略)
注意:(1)两相交直线无距离可言(2)与两点的距离、点到直线的距离的区别与联系
第三步:应用举例:
例(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.
证明略.
例:(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+240,求∠A的邻角的度数。
(3)平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。
(4)在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。
例:如图(5),AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE
如图(6),在平行四边形ABCD中,AE=CF,求证AF=CE
第四步:随堂练习
1.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
2、如图:在 ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有( ).
(A)4个 (B)5个 (C)8个 (D)9个
3、如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.
第五步:课后小结 :
1、平行四边形的概念。
2、平行四边形的性质定理及其应用。
3、两条平行线的距离。
4、学法指导:在条件中有“平行四边形”你应该想到什么?
数学八年级下册第19章 四边形19.2 平行四边形教案设计: 这是一份数学八年级下册第19章 四边形19.2 平行四边形教案设计,共2页。教案主要包含了引入课题,探究新知,巩固练习,课堂小结等内容,欢迎下载使用。
2020-2021学年19.2 平行四边形教案: 这是一份2020-2021学年19.2 平行四边形教案,共4页。教案主要包含了引言,新授等内容,欢迎下载使用。
初中数学沪科版八年级下册19.2 平行四边形教案设计: 这是一份初中数学沪科版八年级下册19.2 平行四边形教案设计,共3页。