数学八年级下册22.1 平行四边形的性质教案设计
展开
这是一份数学八年级下册22.1 平行四边形的性质教案设计,共6页。教案主要包含了教材分析,教学目标,教学重点,教学难点等内容,欢迎下载使用。
22.1 平行四边形的性质【教材分析】 平行四边形是空间与图形领域中研究的主要对象之一,不仅是平行线的性质、全等三角形等知识的延续和深化,而且平行四边形与后续学习矩形、菱形、正方形之间体现了“一般与特殊”的研究问题的思想。发现命题是数学活动“再创造”的产物,发现真理的过程和方法一脉相承,而平行四边形正是学生优化思维程序、提升思维品质的良好素材。学生在学习和掌握了旋转、中心对称的概念的基础上学习平行四边形的性质,用中心对称作为工具可以比较自然地得出平行四边形的性质,同时研究平行四边形的性质也可以加深对中心对称图形的认识。【教学目标】知识与技能探索并掌握平行四边形的相关概念和性质及其简单应用。数学思考(1)在观察、实验、猜想、证明等数学活动中,初步发展合情推理和初步的演绎推理能力,能有条理、清晰地阐述自己的观点。(2)初步体会抽象、推理的数学思想方法。(3)初步感悟证明的意义。解决问题(1)初步体会建立数学概念、研究数学命题的基本策略, 并逐步应用这一过程解决其他同类问题。(2)初步体会解决问题方法的多样性。(3)初步形成反思的意识。情感态度与价值观(1)初步形成严谨求实的科学态度。(2)逐步养成独立思考、合作交流的习惯。(3)体会获得成功的乐趣。【教学重点】理解并掌握平行四边形的概念及其性质。 【教学难点】初步体会概念建立和命题研究的一般方法,初步感悟合情推理和演绎推理的辩证关系。教学环节教师活动学生活动设计意图 一、建立概念 1.前面我们从定义、性质和判定三个角度研究了三角形,从今天开始我们用类比的方法也从这三个角度学习四边形。下面请同学们观察这几幅图片,看看包含哪些基本图形? 学生认真观察,并从图片中抽象出几何图形从图片中抽象出四边形,使得概念学习比较生动和贴近生活,体会数学与日常生活的密切联系。2.观察抽象出的四边形,交流它们的共同特性和不同特性,并交流。3.描述平行四边形,并与同学交流;4.试着给平行四边形下一个定义.(1)文字语言两组对边分别平行的四边形叫平行四边形. (2)记作 ABCD;读作平行四边形ABCD。(3)符号语言∵AB∥DC ; AD∥BC ∴四边形ABCD是平行四边形5.为了便于探究,叙述方便,我们给出一些新名称:连结平行四边形不相邻的两个顶点的线段叫做平行四边形的对角线;线段AC、BD就是ABCD的两条对角线. 在辨析中自然而然地建立平行四边形的概念。渗透类比思想,在小学感性认知平行四边形的基础之上,上升到理性的认识,这样的设计有利于培养学生的归纳概括能力,初步体会建立概念的一般方法。 教学环节教师活动学生活动 设计意图 二、研究性质 (一)动手操作 大胆猜想活动用品(课前准备的工具):全等的三角形纸板、平行四边形纸板各一对,直尺,量角器,一枚大头针。 活动步骤:(1)用大头针固定在两张全等的平行四边形纸片的对角线的交点处,使两张纸片完全重合,下面那张固定不动,旋转上边的纸片180度,这两个图形能完全重合吗?平行四边形是不是中心对称图形?如果是,哪个点是它的对称中心?被对角线分成的三角形中,关于点O成中心对称的三角形有几对?(2)在上面的活动过程中,你发现了□ABCD的对边AD与BC,AB与DC之间的数量关系;对角∠A与∠C,∠B与∠D它们之间的数量关系;以及对角线OA与OC,OB与OD之间的数量关系;(3)与同伴交流,实验现象是否相同?(4)把你的发现写出来。平行四边形是中心对称图形,它的对称中心是两条对角线的交点,同时我们还发现了手中的平行四边形对边相等、对角相等、对角线互相平分。1.学生按照实验步骤动手操作.2.学生观察实验现象,3.同伴交流实验现象,4.大胆猜想平行四边形的性质.5.全班分享自己的新发现. 用中心对称作为工具可以比较自然地得出平行四边形的性质,同时研究平行四边形的性质也可以加深对中心对称图形的认识.从学生熟悉和喜欢的实验活动入手,引导学生作出猜想。发现和猜想是合情推理最重要的环节,是发展学生数学思维的重要方面,是新课程标准中重点强调的数学活动,可以使学生终身受益。 教学环节教师活动学生活动设计意图 二、研究性质 (二)逻辑证明 演绎推理我们可以画出千百个不同的平行四边形,也可以用不同的方法试验验证我们的猜想,每一次试验验证都使得我们的猜想增加分量,变得更为可信,但是我们不可能把任何一个平行四边形都验证一次,那怎么证明我们的猜想一定成立呢?现在我们换一种验证思路,采用演绎推理的方式来验证上面的猜想:1.证明一个几何命题,一般首先根据命题画出图形,用符号语言写出已知、求证。2.引导先独立思考,然后在小组内交流你的方法,互相检查、共同完善。3.引导全班交流分享.4.引导学生总结归纳逻辑证明的不同方法.5.请你谈谈对证明的认识.教师预设:学生在证明角时可能会用到:(1)用同旁内角来证。(2)利用同位角和内错角来证。(3)分割成两个平行四边形来证。(4)分割成两个全等三角形来证。 1.学生画出图形,用符号语言写出已知、求证。2.学生独立证明上述猜想.3.小组内交流证明方法,组内互相检查、共同完善。4.全班交流分享.5.学生总结归纳逻辑证明的不同方法.6.学生各抒己见,分享对证明的不同认识,感悟证明的意义. “证明”环节1.倡导证明方法的多样性,初步培养演绎推理的能力,并提高逻辑思维水平;2.把几何论证作为探究活动的自然延续和必然发展,学生真正体会“为什么要证明”,认识到证明是实验验证基础上的另一种逻辑的验证方法,从理性上认识到结论的确定性,感受证明的必要性。3.逐步养成步步有据的推理意识. 教学环节教师活动学生活动 设计意图 二、研究性质 (三)归纳概括 形成结论1.请用文字语言归纳概括你所得到的结论。归纳:(1)平行四边形对边相等——边(2)平行四边形对角相等——角2.请用符号语言表示出来.(1)性质一:平行四边形对边相等.符号语言如下:∵四边形ABCD为平行四边形∴_______ (2)性质二:平行四边形对角相等.符号语言如下:∵四边形ABCD为平行四边形.∴_______1.学生用文字语言归纳概括平行四边形的性质.2.学生尝试文字语言转化为符号语言。3.学生初步体会命题的一般研究方法,并各抒己见,发表自己对命题研究方法的感受和体会,并表达对证明的认识.(1)提高归纳概括的能力;(2)引导学生反思科学研究的全过程,体会数学命题研究的一般方法,初步领悟科学的本质;优化学生的思维品质,提高学生的数学素养.(3)引导学生学会反思,关注学生对自己思考过程的清晰、有条理的表达能力,提高多元认知能力。 教学环节教师活动学生活动 设计意图 二、研究性质 (四)应用性质 加深理解(1)在平行四边形ABCD中,AB=2,AD=3, 求平行四边形ABCD的周长. (2)平行四边形ABCD中,∠B+∠D =260º,请你求∠A和∠C的度数.3.在平行四边形ABCD中,∠A和∠B 的度数之比为5:4,求∠C的度数。4.在平行四边形ABCD中,AC平分∠DAB, AB=3,求平行四边形ABCD的周长.课本119页练习1、2、3 1.学生独立思考并完成。2.学生有条理地表达自己的思路.3.以填空的形式补全解题过程。4.全班分享时,共同完善、修正答案。本环节力求提高学生的演绎推理能力。同时本环节通过应用性质,加深了对性质的理解,而且可以分别将新知识纳入到学生自身的知识体系中。 教学环节教师活动学生活动设计意图 三、回顾反思 1.这节课我们探究了平行四边形的哪些问题?2.在探究这些问题时,经历了怎样的过程?积累了哪些宝贵的活动经验?3.你感受到了什么数学思想方法?4.通过本节课的学习,对我们有什么启示?你还有其他的感想、问题和疑惑吗? 学生独立思考,畅所欲言,谈学到的数学结论,谈探究的过程,在反思中再次感悟积累的活动经验,以备以后的探究学习中能有效迁移。 反思是数学活动的核心和动力,只有以反思为核心的数学教育,才能使学生真正深入到数学学习过程之中,也才能真正抓住数学思维的内在实质。 四、课下延伸 基础性作业:119页习题A组提升类作业:119页习题B组巩固所学的知识,强化基本技能的训练,培养学生良好的学习习惯和思维品质。(2) 分层作业,关注学生个体的差异,使不同的学生在数学上获得不同的发展。
相关教案
这是一份冀教版八年级下册22.1 平行四边形的性质教案及反思,共3页。教案主要包含了教学目标,教学重点与难点,教学过程,创设情境,拓展延伸[来源,回顾反思等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册22.1 平行四边形的性质教案设计,共2页。教案主要包含了教学目标,教学重点与难点,教学过程,创设情境,拓展延伸[,回顾反思等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册20.3 函数的表示教案设计,共3页。教案主要包含了课后随笔等内容,欢迎下载使用。