初中华师大版10.5 图形的全等教案
展开教学内容
§10.5图形的全等
第1课时
教学目标
知识与技能
过程与方法
1、培养学生动手操作能力.
2.培养学生观察、探索、分析、归纳等能力.
情感态度与价值观
在学生动手操作的过程中,激发学生学习几何的积极性,培养学生主动探索,敢于实践的科学精神,培养学生合作交流和创新意识.
教学重点
全等多边形性质与识别方法;全等三角形的性质应用.
教学难点
平移、旋转、翻折等图形基本运动对全等图形的影响.
教学方法
引导法,探究法,演示法,类比法,讨论交流法.
教具准备
多媒体,实物展示台,剪刀,方格纸.
教 学 过 程 设 计
一、 看书P133
图形的 、 和 ,是图形的三种基本变换。
1、如图:已知△ABC
(1) 将△ABC向右平移4个方格,得△DEF
△DEF与△ABC能重合吗?
(2) 作△ABC关于直线l的对称图形,得△DEF
△DEF与△ABC能重合吗?
(3) 将△ABC以点O为中心逆时针旋转90°,得 △A3B3C3
△A3B3C3与△ABC能重合吗?
小结:1、 的两个图形,叫做全等图形.
(二)新课
由前面的讲述知:能完全重合的两个图形就是全等图形.
由此,刚才方格纸中的就是全等图形.
下面,我们看看图形的运动对全等图形有何影响?
活动 请同学们在方格纸中任意画一个多边形,先将这个多边形沿某一方向平移一定距离(与原图形无重叠);再将原多边形绕形外一点顺时针(或逆时针)旋转一定角度(与原图形无重叠);然后将原图形沿形外某格线对称;最后将这些图形剪下来,将其叠合.你能发现什么?通过这个活动过程,说明了什么问题?
发现叠合时,几个图形能完全重合.
说明图形经过平移、旋转、翻折的图形运动,位置发生了变化,但形状和大小却没有改变,图形运动前后的两个图形是全等的;反过来,也就是说,两个全等的图形经过图形运动一定能重合.
由刚才的活动,请你说说什么是全等多边形?什么是全等多边形的对应顶点、对应角、对应边?你认为全等多边形有何特征?
全等多边形对应边、对应角分别相等.
如图1,四边形ABCD与四边形EFGH全等,可记为四边形ABCD≌四边形EFGH,请指出对应顶点、对应角、对应边.
实际上,满足这一特征的两个多边形全等.
全等多边形的识别方法:如果两个多边形对应边、对应角分别相等,那么这两个多边形全等.
三角形是特殊的多边形,所以,全等三角形的对应边、对应角分别相等;如果两个三角形的对应边、对应角分别相等,那么这两个多边形全等.
如△ABC与△EFG全等,可记为△ABC≌△EFG.12999.cm
例1 如图2,已知将△ABC绕其顶点A顺时针方向旋转20°后得到△ADE.
(1)△ABC与△ADE的关系如何?
(2)求∠BAD的度数.
分析:将△ABC绕其顶点A旋转得到△ADE,故△ADE是由△ABC旋转得到的,若将△ADE逆时针方向旋转20°,则能与△ABC重合,所以△ABC与△ADE是全等的.
由学生自主思考、分析解答.
探索:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?并画出这些位置关系的代表性图形.
请小组同学合作、讨论、交流.(下面是部分代表性结论)
例2 如图3,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.
分析:由三角形的内角和求出∠ACB,再由△ABC≌△DEF,知△ABC和△DEF的对应边相等,对应角相等,从而求出∠DFE的度数和EC的长.
解:因为 ∠ACB=180°-∠A-∠B
=180°-30°-50°=100°,
又因为 △ABC≌△DEF,
所以 ∠DFE=∠ACB=100°,
EF=BC,
所以 EC=EF-CF=BC-CF=BF=2,
即∠DFE的度数为100°,EC的长为2.
(三)小结
(1)全等图形、全等多边形、全等三角形的概念.
(2)全等多边形的性质与识别方法;全等三角形的性质.
(四)作业
教材第136页习题第1、2、3题.
二、
教学反思
通过学习,学生掌握了全等图形的概念,并且知道了全等的表示方法,理解了全等图形和全等三角形的性质。但是对于变化图形,还有的学生不能正确的求出对应顶点和对应边、对应角。在教学中要加强对应顶点写在对应位置。
初中数学华师大版七年级下册10.5 图形的全等教案: 这是一份初中数学华师大版七年级下册10.5 图形的全等教案,共5页。教案主要包含了选择题,填空题,解答题,拓展拔高,课堂小结,作业,板书设计等内容,欢迎下载使用。
初中数学华师大版七年级下册第10章 轴对称、平移与旋转10.5 图形的全等教学设计: 这是一份初中数学华师大版七年级下册第10章 轴对称、平移与旋转10.5 图形的全等教学设计,共2页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
初中数学2 图形的全等教案及反思: 这是一份初中数学2 图形的全等教案及反思,共3页。教案主要包含了观察图片找共性,激活思维,观察图片找不同点,拓展思维,动脑思考,提升认知,小结与作业,板书设计等内容,欢迎下载使用。