开学活动
搜索
    上传资料 赚现金

    2021中考数学二轮复习微专题:最值(阿氏圆问题)突破与提升策略(无答案)

    2021中考数学二轮复习微专题:最值(阿氏圆问题)突破与提升策略(无答案)第1页
    2021中考数学二轮复习微专题:最值(阿氏圆问题)突破与提升策略(无答案)第2页
    2021中考数学二轮复习微专题:最值(阿氏圆问题)突破与提升策略(无答案)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021中考数学二轮复习微专题:最值(阿氏圆问题)突破与提升策略(无答案)

    展开

    这是一份2021中考数学二轮复习微专题:最值(阿氏圆问题)突破与提升策略(无答案),共8页。

    所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.
    如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P构成的图形为圆.
    下给出证明
    法一:首先了解两个定理
    (1)角平分线定理:如图,在△ABC中,AD是∠BAC的角平分线,则.
    证明:,,即
    (2)外角平分线定理:如图,在△ABC中,外角CAE的角平分线AD交BC的延长线于点D,则.
    证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,则,即.
    接下来开始证明步骤:
    如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理,,故M点为定点,即∠APB的角平分线交AB于定点;
    作∠APB外角平分线交直线AB于N点,根据外角平分线定理,,故N点为定点,即∠APB外角平分线交直线AB于定点;
    又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.
    法二:建系
    不妨将点A、B两点置于x轴上且关于原点对称,设A(-m,0),则B(m,0),设P(x,y),PA=kPB,即:
    解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.
    那么这个玩意和最值有什么关系呢?且来先看个例子:
    如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则的最小值为__________.
    【分析】这个问题最大的难点在于转化,此处P点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.
    法一:构造相似三角形
    注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=.
    问题转化为PM+PB最小值,直接连BM即可.
    【问题剖析】
    (1)这里为什么是?
    答:因为圆C半径为2,CA=4,比值是1:2,所以构造的是,也只能构造.
    (2)如果问题设计为PA+kPB最小值,k应为多少?
    答:根据圆C半径与CB之比为2:3,k应为.
    【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.
    法二:阿氏圆模型
    对比一下这个题目的条件,P点轨迹是圆,A是定点,我们需要找出另一个定点M使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!
    而且这种问题里,给定的圆的位置、定点A的位置、线段的比例等,往往都是搭配好的!
    P点轨迹圆的圆心C点和A点在直线AC上,故所求M点在AC边上,考虑到PM:PA=1:2,不妨让P点与D点重合,此时DM==1,即可确定M点位置.

    如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.
    【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M点位置,虽不够严谨,却很实用.
    【练习1】如图,在中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .
    【分析】首先对问题作变式2AD+3BD=,故求最小值即可.
    考虑到D点轨迹是圆,A是定点,且要求构造,条件已经足够明显.
    当D点运动到AC边时,DA=3,此时在线段CD上取点M使得DM=2,则在点D运动过程中,始终存在.
    问题转化为DM+DB的最小值,直接连接BM,BM长度的3倍即为本题答案.
    【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则的最大值为_______.
    【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值.
    连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.

    相关试卷

    专题66 阿氏圆中的双线段模型与最值问题-中考数学重难点专项突破(全国通用):

    这是一份专题66 阿氏圆中的双线段模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题66阿氏圆中的双线段模型与最值问题原卷版docx、专题66阿氏圆中的双线段模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    中考数学压轴专题 圆中的最值模型之阿氏圆模型:

    这是一份中考数学压轴专题 圆中的最值模型之阿氏圆模型,共11页。

    中考数学二轮复习专题38阿氏圆几何最值之隐形圆问题含解析答案:

    这是一份中考数学二轮复习专题38阿氏圆几何最值之隐形圆问题含解析答案,共37页。试卷主要包含了如图,在中,,cm,cm等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map