数学八年级下册1. 一次函数教案设计
展开17.3.1 一次函数
教学目标
1.经历探索过程,发展学生的抽象思维能力.
2.理解一次函敷和正比例函数的概念。
3.能根据已知条件,写出简单的一次函数表达式,进一步发展学生的数学应用能力.
教学过程
一、创设问题情境
问题l:小明暑假第一次去北京,汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.巳知A地直达北京的高速公路全程为 570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析:我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值.显然,应该探究这两个量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
S=570-95t (1)
说明:找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s为因变量。
问题2:小张准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元。试写出小张的存款数与从现在开始的月份数之间的函数关系式.
分析:我们设从现在开始的月份数为x,小张的存款数为9元,得到所求函数关系式为
y=__________ (2)
问题3:以上(1)与(2)表示的这两个函数有什么共同点?
(上述(1)与(2)表示的函数解析式都是用自变量的一次整式表示的)
二、一次函数的定义
函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0。当b=0时,一次函数y=kx(常数k≠0)也叫做正比例函数.正比例函数也是一次函数,它是一次函数的特例。
三、范例
例1.梯形的上下底边长分别为6cm和l0cm,写出梯形的面积与它的高之间的函数关系式,并问这是一次函数吗?是正比例函数吗?
例2.写出多边形的内角和与它的边数之间的函数关系式,利用这函数关系式求边数取多少时,其内角和等于900度?
四、课堂练习
P45页练习1、2
五、作业
P52页习题17.3 2、3。
六、教学反思:
初中数学华师大版八年级下册1. 一次函数教案: 这是一份初中数学华师大版八年级下册1. 一次函数教案,共7页。教案主要包含了想一想,回顾与思考,问题情境,随堂练习,巩固新知,应用拓展,作业布置,请你决策,思考小结等内容,欢迎下载使用。
初中华师大版1. 一次函数教学设计及反思: 这是一份初中华师大版1. 一次函数教学设计及反思,共3页。
数学华师大版1. 一次函数教学设计: 这是一份数学华师大版1. 一次函数教学设计,共3页。教案主要包含了教师准备,学生准备等内容,欢迎下载使用。