2020-2021学年26.1 二次函数教学设计
展开
这是一份2020-2021学年26.1 二次函数教学设计,共2页。教案主要包含了知识结构,注意事项等内容,欢迎下载使用。
第27章 二次函数小结与复习1 教学内容 教学目标 1)能结合实例说出二次函数的意义。(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。(3)掌握二次函数的平移规律。(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。(5)会用待定系数法灵活求出二次函数关系式。(6)熟悉二次函数与一元二次方程及方程组的关系。(7)会用二次函数的有关知识解决实际生活中的问题教学重点 能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值教学难点 会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值会用二次函数的有关知识解决实际生活中的问题教具准备 投影仪,胶片. 教学过程 初 备 复习建构 一、知识结构: 二、注意事项:在学习二次函数时,要注重数形结合的思想方法。在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。 复习题组 1.已知函数,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.2.抛物线经过点(3,-1),则抛物线的函数关系式为 .3.抛物线,开口向下,且经过原点,则k= .4.点A(-2,a)是抛物线上的一点,则a= ; A点关于原点的对称点B是 ;A点关于y轴的对称点C是 ;其中点B、点C在抛物线上的是 . 5.若二次函数的图象经过点(2,0)和点(0,1),则函数关系式为 . 典例探究 例1某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?例2阅读下面的文字后,解答问题.有这样一道题目:“已知二次函数y=ax2+bx+c的图象经过点A(0,a) 、B(1,-2)、 、 ,求证:这个二次函数图象的对称轴是直线x=2.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.(1)根据现有信息,你能否求出题目中二次函数的解析式? 若能,写出求解过程,若不能请说明理由;(2)请你根据已有信息,在原题中的矩形框内,填上一个适当的条件,把原题补充完整 小结与作业 课堂小结:谈一下学习本章应该注意的问题有那些?课堂作业:1已知二次函数的图象经过点(3,2)。(1)求这个二次函数的关系式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围。2已知抛物线与x轴的一个交点为A(-1,0)。(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的函数关系式。家庭作业:《二次函数复习练习》
相关教案
这是一份数学九年级下册第26章 二次函数26.1 二次函数教学设计及反思,共3页。教案主要包含了知识点整理,基础题训练等内容,欢迎下载使用。
这是一份初中数学26.1 二次函数教案,共26页。教案主要包含了情景创设,实践与探索,讲解新课,巩固新课,布置作业,作业等内容,欢迎下载使用。
这是一份初中数学26.1 二次函数教案,共43页。教案主要包含了情景创设,实践与探索,讲解新课,巩固新课,布置作业,作业等内容,欢迎下载使用。