2020-2021学年27.3 圆中的计算问题教学设计
展开28.3 圆中的计算问题(第一课时)
教学内容
1.n°的圆心角所对的弧长L=
2.扇形的概念;
3.圆心角为n°的扇形面积是S扇形=;
4.应用以上内容解决一些具体题目.
教学目标
了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.
通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用这些公式解决一些题目.
重难点、关键
1.重点:n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用.
2.难点:两个公式的应用.
3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.
教具、学具准备
小黑板、圆规、直尺、量角器、纸板.
教学过程
一、复习引入
(老师口问,学生口答)请同学们回答下列问题.
1.圆的周长公式是什么?
2.圆的面积公式是什么?
3.什么叫弧长?
老师点评:(1)圆的周长C=2R
(2)圆的面积S图=R2
(3)弧长就是圆的一部分.
二、探索新知
(小黑板)请同学们独立完成下题:设圆的半径为R,则:
1.圆的周长可以看作______度的圆心角所对的弧.
2.1°的圆心角所对的弧长是_______.
3.2°的圆心角所对的弧长是_______.
4.4°的圆心角所对的弧长是_______.
……
5.n°的圆心角所对的弧长是_______.
(老师点评)根据同学们的解题过程,我们可得到:
n°的圆心角所对的弧长为
例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)
分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可.
解:R=40mm,n=110
∴的长==≈76.8(mm)
因此,管道的展直长度约为76.8mm.
问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示:
(1)这头牛吃草的最大活动区域有多大?
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?
学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积.
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:
像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
(小黑板),请同学们结合圆心面积S=R2的公式,独立完成下题:
1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.
2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.
3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.
4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.
……
5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.
老师检察学生练习情况并点评
1.360 2.S扇形=R2 3.S扇形=R2 4.S扇形= 5.S扇形=
因此:在半径为R的圆中,圆心角n°的扇形
S扇形=
例2.如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1)
分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.
解:的长=×10=≈10.5
S扇形=×102=≈52.3
因此,的长为25.1cm,扇形AOB的面积为150.7cm2.
三、巩固练习
课本P122练习.
四、应用拓展
例3.(1)操作与证明:如图所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.
(2)尝试与思考:如图a、b所示,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心点处,并将纸板绕O旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a.
(a) (b)
(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为_______时,正n边形的边被纸板覆盖部分的总长度为定值a,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由.
解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD分别交于点M、N,连结OA、OD.
∵四边形ABCD是正方形
∴OA=OD,∠AOD=90°,∠MAO=∠NDO,
又∠MON=90°,∠AOM=∠DON
∴△AMO≌△DNO
∴AM=DN
∴AM+AN=DN+AN=AD=a
特别地,当点M与点A(点B)重合时,点N必与点D(点A)重合,此时AM+AN仍为定值a.
故总有正方形的边被纸板覆盖部分的总长度为定值a.
(2)120°;70°
(3);正n边形被纸板覆盖部分的面积是定值,这个定值是.
五、归纳小结(学生小结,老师点评)
本节课应掌握:
1.n°的圆心角所对的弧长L=
2.扇形的概念.
3.圆心角为n°的扇形面积是S扇形=
4.运用以上内容,解决具体问题.
六、布置作业
1.教材P124 复习巩固1、2、3 P125 综合运用5、6、7.
2.选用课时作业设计.
初中数学华师大版九年级下册27.3 圆中的计算问题一等奖第2课时教学设计: 这是一份初中数学华师大版九年级下册27.3 圆中的计算问题一等奖第2课时教学设计,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
初中华师大版27.3 圆中的计算问题优秀第1课时教案及反思: 这是一份初中华师大版27.3 圆中的计算问题优秀第1课时教案及反思,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
华师大版九年级下册27.3 圆中的计算问题教学设计: 这是一份华师大版九年级下册27.3 圆中的计算问题教学设计,共6页。