高中数学人教版新课标A必修11.1.2集合间的基本关系教学设计及反思
展开
这是一份高中数学人教版新课标A必修11.1.2集合间的基本关系教学设计及反思,共9页。教案主要包含了学习目标,学习重点,学习难点,自主学习,预习评价,合作探究,教师点拨,交流展示等内容,欢迎下载使用。
集合间的基本关系课前预习 · 预习案【学习目标】1.理解集合之间包含与相等的含义,能识别给定集合的子集.2.了解空集的含义.3.能使用Venn图表示集合间的关系,体会图形对理解抽象概念的作用.【学习重点】1.子集的概念2.子集、真子集的概念;能利用数轴表达集合间的关系。【学习难点】1.元素与子集、属于与包含之间的区别2.能利用数轴表达集合间的关系【自主学习】1.集合的相关概念(1)子集:(2)集合相等:①若,则集合中的元素和集合中的元素是_______________.②用子集的含义去理解,则_______________ 且 ________________.(3)真子集:①的含义是:集合,但存在元素,且______________.②有两种情况:与.2.Venn图Venn图表示集合的优点在于:形象直观,通常用平面上封闭曲线的内部代表集合3.空集的有关概念以及常用结论(1)空集的有关概念:①特征:不含任何元素;②表示:_________________;③规定:空集是任何集合的__________________.(2)常用结论:①任何一个集合是它本身的_______________,即_______________.②对于集合,,,如果,且,那么 _____________.【预习评价】1.已知集合,,则A. B.C. D.2.下列四个集合中,是空集的是A.B.C.D.3.用适当的符号填空:(l)______________.(2) _____________,(3) _____________4.已知集合,则集合= ______________.5.集合,,若,则=____________.知识拓展 · 探究案【合作探究】1.子集根据子集的含义,探究以下问题:(1)“”与“”各反映什么样的关系?(2)若,则说明集合是由集合的部分元素组成的,对吗?2.子集观察下面给出的集合中的元素与集合中的元素.,.②设为新华中学高一(2)班男生的全体组成的集合,为这个班学生的全体组成的集合,思考问题:(1) 两组中的集合中元素与集合有什么关系?(2) 两集合间的关系如何表示?(3) 如何用直观图表示集合,之间的关系?3.真子集、集合相等及空集的概念根据真子集与集合相等的概念及或,思考下列问题.(1)若,则中的元素是否一定比中元素少呢?(2)集合相等的定义中的“”能否换为“”?(3)对于集合,,,若,则吗?(4)有没有真子集?有没有真子集?【教师点拨】1.对子集含义的两点说明(1)“是的子集”的含义是:集合中的任何一个元素都是集合中的元素.(2)任何一个集合都是它本身的子集.2.对真子集、空集的三点说明(1)空集是任何非空集合的真子集.(2)对于集合,,,如果,,那么(3)空集是不含任何元素的集合,不能认为,也不能认为,而是,或.3.对集合相等的两点说明(1)从元素的特征出发表达两个集合相等,即集合中的元素和集合中的元素相同,则这两个集合相等.(2)从两个集合的关系出发表达两个集合相等,即若,别对任意.都有,同时若,则对任意都有,这说明两个集合的元素是相同的,即两集合相等.【交流展示】1.如果,那么A.B.C.D.2.已知集合{x|x=,x∈N且x<2},,试判断集合,间的关系.3.集合),定义,则的子集个数为A.7B.12C.16D.324.已知集合,求集合所有子集的元素之和.5.已知,若则的值是A.2B.2或3C.1或3D.1或26.已知集合,集合,若,求的值.【学习小结】1.判断两集合关系的步骤(1)先对所给集合进行化简.(2)弄清两集合中元素的组成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化、形象化.提醒:要分清所判断的是元素与集合的关系,还是集合与集合的关系,也就是说使用属于(不属于)符号,还是使用包含(不包含)符号.2.求集合子集、真子集个数的三个步骤3.与子集、真子集个数有关的四个结论假设集合中合有个元素,则有:①的子集的个数为个;②的真子集的个数为个;③的非空子集的个数为个;④的非空真子集的个数为个.以上结论在求解时可以直接应用.【当堂检测】1.设,若,则=A.0B.-2C.0或-2D.0或±22.设,若,则实数的取值范围是A.B.C.D.3.同时满足:①;②则的非空集合有A.16个B.15个C.7个D.6个4.满足的集合的个数为_________.5.已知,求的取值范围.6.已知集合,集合,试问集合与的关系怎样?答案课前预习 · 预习案【自主学习】1.(1)任意一个 含于 包含(2)①一样的 ② (3)①x∉A 3.(1)②Ø ③子集(2)①子集 ②【预习评价】1.C2.B3.(1) (2) (3)4.{1,3}5.0知识拓展 · 探究案【合作探究】1.(1)“∈”表示元素与集合之间的关系;“”表示集合与集合之间的关系.(2)不对,如集合A与集合B相等,显然A不是由B的部分元素组成的.2.(1)集合A中的任何一个元素都是集合B中的元素.(2)两个集合有包含关系,称集合A为集合B的子集,记作(或.(3)如图,用Venn图表示两个集合之间的“包含”关系,(或).3.(1)一定,因为B中至少有一个元素不属于A.(2)不能.因为AB同时BA的集合A,B是不存在的.(3)相等,由集合相等的定义可知A=B,B=C,则A=C一定成立.(4)因为Ø是不含任何元素的集合,所以它没有真子集;{0}有真子集,是Ø.【交流展示】1.D2.因为x=|x|,所以x≥0.又因为x∈N且x<2,所以集合M={0,1}.又因为x∈Z,-2<x<2,所以集合N={-1,0,1}.由子集的定义可知MN.3.C4.集合A的所有子集分别是:Ø,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意A中的每个元素均出现在A的四个子集中,故所求元素之和为(1+3+5)×4=36.5.D6.因为A=B且a≠0,所以b=0,因此由已知得a2=1,所以a=1或a=-1,若a=1,那么集合A中的元素a=1,与元素的互异性矛盾,所以a=1不成立,则只有a=-1成立,所以a2 013+b2 013=(-1)2 013=-1.【当堂检测】1.C2.A3.C4.75.m≤36.因为a∈R,所以x=1+a2≥1,x=a2-4a+5=(a-2)2+1≥1,所以M={x|x≥1},M={x|x≥1},所以M=P.
相关教案
这是一份高中人教版新课标A1.1.2集合间的基本关系教学设计,共12页。教案主要包含了补充练习,备选例题等内容,欢迎下载使用。
这是一份高中数学人教版新课标A必修11.2.1函数的概念教学设计,共6页。
这是一份高中数学人教版新课标A必修11.2.1函数的概念教案,共6页。

