初中数学14.3 因式分解综合与测试教案及反思
展开
这是一份初中数学14.3 因式分解综合与测试教案及反思,共3页。
因式分解〖知识点〗 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。〖课标要求〗理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。〖考查重点与常见题型〗考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法 如多项式 其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用 写出结果. (3)十字相乘法对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果 有两个根X1,X2,那么 考查题型:1.下列因式分解中,正确的是( )(A) 1- 14 x2= 14 (x + 2) (x- 2) (B)4x –2 x2 – 2 = - 2(x- 1)2(C) ( x- y )3 –(y- x) = (x – y) (x – y + 1) ( x–y – 1)(D) x2 –y2 – x + y = ( x + y) (x – y – 1) 2.下列各等式(1) a2- b2 = (a + b) (a–b ),(2) x2–3x +2 = x(x–3) + 2 (3 ) 1 x2 –y2 -1 ( x + y) (x – y ) ,(4 )x2 + 1 x2 -2-( x -1x )2从左到是因式分解的个数为( )(A) 1 个 (B) 2 个 (C) 3 个 (D) 4个3.若x2+mx+25 是一个完全平方式,则m的值是( )(A) 20 (B) 10 (C) ± 20 (D) ±104.若x2+mx+n能分解成( x+2 ) (x – 5),则m= ,n= ;5.若二次三项式2x2+x+5m在实数范围内能因式分解,则m= ;6.若x2+kx-6有一个因式是(x-2),则k的值是 ;7.把下列因式因式分解:(1)a3-a2-2a (2)4m2-9n2-4m+1 (3)3a2+bc-3ac-ab (4)9-x2+2xy-y2 8.在实数范围内因式分解:(1)2x2-3x-1 (2)-2x2+5xy+2y2 考点训练:1. 分解下列因式:(1).10a(x-y)2-5b(y-x) (2).an+1-4an+4an-1 (3).x3(2x-y)-2x+y (4).x(6x-1)-1 (5).2ax-10ay+5by+6x (6).1-a2-ab-14 b2 *(7).a4+4 (8).(x2+x)(x2+x-3)+2 (9).x5y-9xy5 (10).-4x2+3xy+2y2 (11).4a-a5 (12).2x2-4x+1 (13).4y2+4y-5 (14)3X2-7X+2 解题指导: 1.下列运算:(1) (a-3)2=a2-6a+9 (2) x-4=(x +2)( x -2) (3) ax2+a2xy+a=a(x2+ax) (4) 116 x2-14 x+14 =x2-4x+4=(x-2)2其中是因式分解,且运算正确的个数是( )(A)1 (B)2 (C)3 (D)42.不论a为何值,代数式-a2+4a-5值( )(A)大于或等于0 (B)0 (C)大于0 (D)小于03.若x2+2(m-3)x+16 是一个完全平方式,则m的值是( )(A)-5 (B)7 (C)-1 (D)7或-14.(x2+y2)(x2-1+y2)-12=0,则x2+y2的值是 ;5.分解下列因式:(1).8xy(x-y)-2(y-x)3 *(2).x6-y6 (3).x3+2xy-x-xy2 *(4).(x+y)(x+y-1)-12 (5).4ab-(1-a2)(1-b2) (6).-3m2-2m+4 *4。已知a+b=1,求a3+3ab+b3的值 5.a、b、c为⊿ABC三边,利用因式分解说明b2-a2+2ac-c2的符号 6.0<a≤5,a为整数,若2x2+3x+a能用十字相乘法分解因式,求符合条件的a 独立训练: 1.多项式x2-y2, x2-2xy+y2, x3-y3的公因式是 。2.填上适当的数或式,使左边可分解为右边的结果:(1)9x2-( )2=(3x+ )( -15 y), (2).5x2+6xy-8y2=(x )( -4y).3.矩形的面积为6x2+13x+5 (x>0),其中一边长为2x+1,则另为 。4.把a2-a-6分解因式,正确的是( )(A)a(a-1)-6 (B)(a-2)(a+3) (C)(a+2)(a-3) (D)(a-1)(a+6)5.多项式a2+4ab+2b2,a2-4ab+16b2,a2+a+14 ,9a2-12ab+4b2中,能用完全平方公式分解因式的有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个6.设(x+y)(x+2+y)-15=0,则x+y的值是( )(A)-5或3 (B) -3或5 (C)3 (D)57.关于的二次三项式x2-4x+c能分解成两个整系数的一次的积式,那么c可取下面四个值中的( )(A) -8 (B) -7 (C) -6 (D) -58.若x2-mx+n=(x-4)(x+3) 则m,n的值为( )(A) m=-1, n=-12 (B)m=-1,n=12 (C) m=1,n=-12 (D) m=1,n=12.9.代数式y2+my+254 是一个完全平方式,则m的值是 。10.已知2x2-3xy+y2=0(x,y均不为零),则 xy + yx 的值为 。11.分解因式:(1).x2(y-z)+81(z-y) (2).9m2-6m+2n-n2 *(3).ab(c2+d2)+cd(a2+b2) (4).a4-3a2-4 *(5).x4+4y4 *(6).a2+2ab+b2-2a-2b+1 12.实数范围内因式分解(1)x2-2x-4 (2)4x2+8x-1 (3)2x2+4xy+y2
相关教案
这是一份初中数学人教版八年级上册14.3 因式分解综合与测试教案,共2页。
这是一份2020-2021学年14.3 因式分解综合与测试教学设计,共3页。教案主要包含了复习提问,新课,作业,板书设计等内容,欢迎下载使用。
这是一份人教版八年级上册14.3.1 提公因式法教案设计,共6页。教案主要包含了教学过程,关于教学设计等内容,欢迎下载使用。