人教版八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.2 三角形的高、中线与角平分线教学演示课件ppt
展开再打开纸片 ,看看折痕与这个角有何关系?
1、如图,是一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?
如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
2、证明: 在△ACD和△ACB中 AD=AB(已知) DC=BC(已知) CA=CA(公共边) ∴ △ACD≌ △ACB(SSS) ∴∠CAD=∠CAB(全等三角形的 对应边相等) ∴AC平分∠DAB(角平分线的定义)
根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)
1〉平分平角∠AOB2〉通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系? 3〉结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。
(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
(2)猜想:角的平分线上的点到角的两边的距离相等.
证明:∵OC平分∠ AOB ∠ AOB (已知) ∴ ∠1= ∠2(角平分线的定义) ∵PD ⊥ OA,PE ⊥ OB(已知) ∴ ∠PDO= ∠PEO(垂直的定义) 在△PDO和△PEO中 ∠PDO= ∠PEO(已证) ∠1= ∠2 (已证) OP=OP (公共边) ∴ △PDO ≌ △PEO(AAS) ∴PD=PE(全等三角形的对应边相等)
已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E求证: PD=PE
角平分线上的点到角两边的距离相等。
(4)得到角平分线的性质:
利用此性质怎样书写推理过程?
思考:要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺 1:20 000)
如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF; 求证:CF=EB
分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF ≌ Rt△EDB.
现已有一个条件BD=DF(斜边相等),还需要我们找什么条件
DC=DE (因为角的平分线的性质) 再用HL证明.
试试自己写证明。你一定行!
一、过程小结:情境→观察→作图→应用→探究→再应用
二、知识小结:本节课学习了那些知识?有哪些运用?你学了吗?做了吗?用了吗?
: 这是一份11.1 与三角形有关的线段课件PPT,共34页。
数学八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.2 三角形的高、中线与角平分线教学课件ppt: 这是一份数学八年级上册第十一章 三角形11.1 与三角形有关的线段11.1.2 三角形的高、中线与角平分线教学课件ppt,共21页。PPT课件主要包含了回忆与思考,用几何符号表示为,范例学习,新知运用2等内容,欢迎下载使用。
初中11.1.2 三角形的高、中线与角平分线图文课件ppt: 这是一份初中11.1.2 三角形的高、中线与角平分线图文课件ppt,共60页。PPT课件主要包含了符号语言,三角形的高线定义,对边的中点,三角形的中线定义,反之如图,课堂小结,三角形的高线,三角形的中线,三角形的角平分线,课后作业等内容,欢迎下载使用。