


初中数学人教版八年级上册13.1.1 轴对称第2课时教学设计
展开通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.
重点难点
重点:等腰三角形的判定定理及其应用.
难点:探索等腰三角形的判定定理.
教学方法
讲练结合法.
教具准备
多媒体课件、投影仪.
教学过程
Ⅰ.提出问题,创设情境
[师]上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?
[生甲]等腰三角形的两底角相等.
[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.
[师]同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.
Ⅱ.导入新课
[师]同学们看下面的问题并讨论:
思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?
在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?
[生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.
[生乙]我认为能同时赶到O点的位置很重要,也就是∠A如果不等于∠B,那么同时以同样的速度就不一定能同时赶到出事地点.
[师]现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?
[生丙]我想它们所对的边应该相等.
[师]为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明.
[生丁]我是运用三角形全等来证明的.
(投影仪演示了同学证明过程)
[例1]已知:在△ABC中,∠B=∠C(如图).
求证:AB=AC.
证明:作∠BAC的平分线AD.
在△BAD和△CAD中,
∴△BAD≌△CAD(AAS).
∴AB=AC.
[师]太好了.从丁同学的证明结论来看,在一个三角形中,如果有两个角相等,那么它们所对的边也是相等,也就说这个三角形就是等腰三角形.这个结论也回答了我们一开始提出的问题.也就是如何来判定一个三角形是等腰三角形.
(演示课件)
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
[师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.
(演示课件)
[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
[师]这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).
求证:AB=AC.
[师]同学们先思考,再分析.
[生]要证明AB=AC,可先证明∠B=∠C.
[师]这位同学首先想到我们这节课的重点内容,很好!
[生]接下来,可以找∠B、∠C与∠1、∠2的关系.
[师]我们共同证明,注意每一步证明的理论根据.
(演示课件,括号内部分由学生来填)
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角对等边).
[师]看大屏幕,同学们试着完成这个题.
(课件演示)
已知:如图,AD∥BC,BD平分∠ABC.
求证:AB=AD.
(投影仪演示学生证明过程)
证明:∵AD∥BC,
∴∠ADB=∠DBC(两直线平行,内错角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角对等边).
[师]下面来看另一个例题.
(演示课件)
[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?
[师]这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.
解:选取比例尺为1:100(即为1 cm代表1 m).
(1)作线段DE=4 cm;
(2)作线段DE的垂直平分线MN,与DE交于点B;
(3)在MN上截取BC=2.5 cm;
(4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长.
[师]同学们按以上步骤来做一做,看结果是多少.
Ⅲ.随堂练习
(一)课本练习1、2、3.
如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,并说明图中有哪些等腰三角形.
答案:∠1=72°,∠2=36°.
等腰三角形有:△ABC、△ABD、△BCD.
2.如图,把一张矩形的纸沿对角线折叠.重合部分是一个等腰三角形吗?为什么?
答案:是等腰三角形.因为,如图可证∠1=∠2.
3.如图,AC和BD相交于点O,且AB∥DC,OA=OB,求证:OC=OD.
答案:
证明:∵OA=OB,
∴∠A=∠B.
又∵AB∥DC,
∴∠A=∠C,∠B=∠D.
∴∠C=∠D.
∴OC=OD(等角对等边).
(二)补充练习:
如图,在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD.
(1)求证:△ABD是等腰三角形.
(2)求∠BAD的度数.
答案:
(1)证明:∵AC⊥BD,
∴∠ACB=∠ACD=90°.
又∵AC=AC,BC=CD,
∴△ACB≌△ACD(SAS).
∴AB=AD(全等三角形的对应边相等).
∴△ABD是等腰三角形.
(2)解:由(1)可知AB=AD,
∴∠B=∠D.
又∵AC=BC,
∴∠B=∠BAC,
AC=CD.
∴∠D=∠DAC(等边对等角).
在△ABD中,∠B+∠D+∠BAC+∠DAC=180°,
∴2(∠BAC+∠DAC)=180°.
∴∠BAC+∠DAC=90°,
即∠BAD=90°.
(鼓励学生思考其他解法)
Ⅳ.课时小结
本节课我们主要探究了等腰三角形判定定理,并对判定定理的简单应用作了一定的了解.在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力.
Ⅴ.课后作业
(一)课本习题13.3 第2、4、5、9、13题.
(二)预习课本.
Ⅵ.活动与探究
[探究1]等腰三角形两底角的平分线相等.
过程:利用等腰三角形的性质即等边对等角,全等三角形的判定及性质.
结果:
已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的平分线.
求证:BD=CE.
证明:∵AB=AC,
∴∠ABC=∠ACB(等边对等角).
∵∠1=∠ABC,∠2=∠ACB,
∴∠1=∠2.
在△BDC和△CEB中,
∵∠ACB=∠ABC,BC=CB,∠1=∠2,
∴△BDC≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等).
[探究2]等腰三角形两腰上的高相等.
过程:同探究1.
结果:
已知:如图,在△ABC中,AB=AC,BE、CF分别是△ABC的高.
求证:BE=CF.
证明:∵AB=AC,
∴∠ABC=∠ACB(等边对等角).
又∵BE、CF分别是△ABC的高,
∴∠BFC=∠CEB=90°.
在△BFC和△CEB中,
∵∠ABC=∠ACB,∠BFC=∠CEB,BC=CB,
∴△BFC≌△CEB(AAS).
∴BE=CF.
[探究3]等腰三角形两腰上的中线相等.
过程:同探究1.
结果:
已知:如图,在△ABC中,AB=AC,BD、CE分别是两腰上的中线.
求证:BD=CE.
证明:∵AB=AC,
∴∠ABC=∠ACB(等边对等角).
又∵CD=AC,BE=AB,
∴CD=BE.
在△BEC和△CDB中,
∵BE=CD,∠ABC=∠ACB,BC=CB,
∴△BEC≌△CDB(SAS).
∴BD=CE.
板书设计
一、等腰三角形的判定定理──等角对等边
二、等腰三角形判定定理的应用
三、随堂作业
四、课时小结
五、课后作业
备课资料
墙上钉了一根木条,小明想检验这根木条是否水平.他拿来一个如下图所示的测平仪,在这个测平仪中,AB=AC,BC边的中点D处挂了一个重锤.小明将BC边与木条重合,观察此时重锤是否通过A点.如果重锤过A点,那么这根木条就是水平的.你能说明其中的道理吗?
答案:根据等腰三角形“三线合一”的性质,等腰三角形ABC底边BC上的中线DA应垂直于底边BC(即木条),如果重锤过点A,说明直线AD垂直于水平线,那么木条就是水平的.根据是平面内过直线外一点有且只有一条直线与已知直线垂直.
人教版八年级上册13.3.1 等腰三角形教案: 这是一份人教版八年级上册13.3.1 等腰三角形教案,共3页。
人教版八年级上册13.3.1 等腰三角形教学设计: 这是一份人教版八年级上册13.3.1 等腰三角形教学设计,共3页。教案主要包含了教材分析,教法与学法,归纳小结,布置作业等内容,欢迎下载使用。
初中数学人教版八年级上册13.3.1 等腰三角形教案: 这是一份初中数学人教版八年级上册13.3.1 等腰三角形教案,共4页。教案主要包含了说教材,说教学目标,说教法与学法,说教学流程,教学评价等内容,欢迎下载使用。