终身会员
搜索
    上传资料 赚现金
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册
    立即下载
    加入资料篮
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册01
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册02
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册03
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册04
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册05
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册06
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册07
    2021_2022学年新教材高中数学第三章函数的概念与性质3.2.2奇偶性课件新人教A版必修第一册08
    还剩33页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课堂教学ppt课件

    展开
    这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课堂教学ppt课件,共41页。PPT课件主要包含了内容索引,课前篇自主预习,课堂篇探究学习,课标阐释,思维脉络,知识点拨,2图象法,答案C等内容,欢迎下载使用。

    1.结合具体函数理解奇函数、偶函数的定义.(数学抽象)2.了解奇函数、偶函数图象的特征.(直观想象)3.会判断(或证明)函数的奇偶性.(逻辑推理)
    [激趣诱思]在我们的日常生活中,可以观察到许多对称现象,如图,六角形的雪花晶体、建筑物和它在水中的倒影……
    问题:上述材料中哪个图形是轴对称图形?哪个图形是中心对称图形?
    知识点一:奇、偶函数的定义一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,
    名师点析 对函数奇偶性定义的理解函数的奇偶性是相对于定义域I内的任意一个x而言的,而函数的单调性是相对于定义域内的某个子集而言的,从这个意义上讲,函数的单调性属于“局部性质”,而函数的奇偶性则属于“整体性质”.
    微思考(1)若一个函数具有奇偶性,其定义域有何特点?提示 定义域关于原点对称.(2)对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?提示 由f(-x)+f(x)=0得f(-x)=-f(x),则f(x)为奇函数.由f(-x)-f(x)=0得f(-x)=f(x),则f(x)为偶函数.
    知识点二:奇、偶函数的图象特征(1)偶函数的图象关于y轴对称;反之,结论也成立,即图象关于y轴对称的函数一定是偶函数.(2)奇函数的图象关于原点对称;反之,结论也成立,即图象关于原点对称的函数一定是奇函数.名师点析 奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反;若奇函数f(x)在区间[a,b](0微思考(1)如果f(x)的图象关于原点对称,且函数在x=0处有定义,那么f(0)为何值?提示 f(x)的图象关于原点对称,即f(x)为奇函数,故满足f(-x)=-f(x).因为f(x)在x=0处有定义,所以f(0)=-f(0),即f(0)=0.(2)若f(x)为奇函数,且点(x,f(x))在其图象上,则还有哪一个点一定在其图象上?若f(x)为偶函数呢?提示 若f(x)为奇函数,则点(-x,-f(x))一定在其图象上;若f(x)为偶函数,则点(-x,f(x))一定在其图象上.
    例1判断下列函数的奇偶性:
    解 (1)函数的定义域为{x|x≠-1},不关于原点对称,故f(x)既不是奇函数又不是偶函数.(2)函数的定义域为R,关于原点对称,f(-x)=(-x)3-2(-x)=2x-x3=-f(x),∴f(x)是奇函数.函数的定义域为{-1,1},关于原点对称.又f(1)=f(-1)=0,故f(x)既是奇函数又是偶函数.
    (4)函数的定义域关于原点对称.(方法1)当x>0时,-x<0,f(-x)=-x[1-(-x)]=-x(1+x)=-f(x).当x<0时,-x>0,f(-x)=(-x)[1+(-x)]=-x(1-x)=-f(x).∴f(-x)=-f(x).∴f(x)是奇函数.图象关于原点对称,∴f(x)是奇函数.
    反思感悟 判断函数奇偶性的两种方法(1)定义法:
    变式训练1判断下列函数的奇偶性:
    (4)f(x)的定义域是R,又f(-x)=|-x+2|+|-x-2|=|x-2|+|x+2|=f(x),所以f(x)是偶函数.
    例2已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1.(1)求f(-1);(2)求f(x)的解析式.解 (1)因为函数f(x)为奇函数,所以f(-1)=-f(1)=-(-2×12+3×1+1)=-2.(2)当x<0时,-x>0,则f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是奇函数,则f(x)=-f(-x),所以f(x)=2x2+3x-1.当x=0时,f(-0)=-f(0),则f(0)=-f(0),即f(0)=0.
    反思感悟 利用函数奇偶性求解析式的方法(1)“求谁设谁”,即在哪个区间上求解析式,x就应在哪个区间上设.(2)要利用已知区间的解析式进行代入.(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).提醒:若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,但若为偶函数,未必有f(0)=0.
    延伸探究 若将本例中的“奇”改为“偶”,“x>0”改为“x≥0”,其他条件不变,求f(x)的解析式.解 当x<0时,-x>0,此时f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是偶函数,则f(x)=f(-x)=-2x2-3x+1,所以f(x)的解析式为
    1.奇偶函数的图象性质例3已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示.(1)请补出完整函数y=f(x)的图象;(2)根据图象写出使f(x)<0的x的取值集合.
    解 (1)由题意作出函数图象如图,(2)据图可知,使f(x)<0的x的取值集合为(-2,0)∪(0,2).
    要点笔记 由于奇函数的图象关于原点对称,偶函数的图象关于y轴对称,因此根据奇、偶函数图象的对称性可以解决如求函数值或画出奇偶函数图象的问题.
    变式训练2(2021北京西城高三期末)已知f(x)为奇函数,其局部图象如图所示,那么(  )A.f(2)=2B.f(2)=-2C.f(2)>-2D.f(2)<-2答案 C解析 由图可知f(-2)<2,因为函数是奇函数,所以f(-2)=-f(2),即-f(2)<2,则f(2)>-2.故选C.
    2.利用奇偶函数的性质求解析式中的参数例4(2021湖南五市十校高一联考)若函数f(x)=ax2+2bx+4a+b是偶函数,定义域为[3a,a+2],则a+b=     . 
    要点笔记 利用奇偶性求参数的方法:(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.(2)解析式含参数:根据f(-x)=-f(x)或f(-x)=f(x)列式,比较系数即可求解.
    变式训练3(2021上海嘉定高一期末)函数f(x)=x3+(m2-1)x2+x为奇函数,则m=     . 答案 ±1解析 根据题意f(x)=x3+(m2-1)x2+x为奇函数,则f(-x)=-f(x),则有(-x)3+(m2-1)(-x)2+(-x)=-[x3+(m2-1)x2+x],则有2(m2-1)x2=0,故m2-1=0,解得m=±1.
    利用定义法、赋值法解决抽象函数奇偶性问题典例 若定义在R上的函数f(x)满足:对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2),且当x>0时,f(x)<0,则(  )A.f(x)是奇函数,且在R上是增函数B.f(x)是奇函数,且在R上是减函数C.f(x)是奇函数,且在R上不是单调函数D.无法确定f(x)的单调性和奇偶性
    解析 令x1=x2=0,则f(0)=2f(0),所以f(0)=0.令x1=x,x2=-x,则f(-x)+f(x)=f(x-x)=f(0)=0,所以f(-x)=-f(x),故函数y=f(x)是奇函数.设x10,所以f(x2-x1)<0,故f(x2)方法点睛 1.判断抽象函数的奇偶性,应利用函数奇偶性的定义,找准方向,巧妙赋值,合理、灵活变形,找出f(-x)与f(x)的关系,从而判断或证明抽象函数的奇偶性.2.有时需要整体上研究f(-x)+f(x)的和的情况.比如:上面典例中利用f(-x)+f(x)=0可得出y=f(x)是奇函数.
    变式训练已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.
    解 (1)∵f(x)对任意x,y都有f(xy)=yf(x)+xf(y),∴令x=y=1时,有f(1×1)=1×f(1)+1×f(1),∴f(1)=0.∴令x=y=-1时,有f[(-1)×(-1)]=(-1)×f(-1)+(-1)×f(-1),∴f(-1)=0.(2)∵f(x)对任意x,y都有f(xy)=yf(x)+xf(y),∴令y=-1,有f(-x)=-f(x)+xf(-1).将f(-1)=0代入,得f(-x)=-f(x),∴函数f(x)是R上的奇函数.
    1.已知一个奇函数的定义域为{-1,2,a,b},则a+b等于(  )A.-1B.1C.0D.2答案 A解析 因为一个奇函数的定义域为{-1,2,a,b},根据奇函数的定义域关于原点对称,所以a与b有一个等于1,一个等于-2,所以a+b=1+(-2)=-1.
    A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数答案 D解析 由题意知函数的定义域是(-∞,-4)∪(-4,+∞),不关于原点对称,所以该函数既不是奇函数又不是偶函数.
    4.若函数f(x)=(x+a)(x-4)为偶函数,则实数a=     . 答案 4解析 f(x)=x2+(a-4)x-4a,∵f(x)是偶函数,∴a-4=0,即a=4.
    5.(2021湖南常德鼎城高一期中)已知函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2-2x.(1)求出函数f(x)在R上的解析式;(2)画出函数f(x)的图象.
    解 (1)①当x=0时,f(0)=0;②当x<0时,-x>0,∵f(x)是奇函数,
    相关课件

    数学必修 第一册3.2 函数的基本性质授课ppt课件: 这是一份数学必修 第一册3.2 函数的基本性质授课ppt课件,共38页。PPT课件主要包含了函数的奇偶性,答案0等内容,欢迎下载使用。

    高中人教A版 (2019)第三章 函数的概念与性质3.2 函数的基本性质备课课件ppt: 这是一份高中人教A版 (2019)第三章 函数的概念与性质3.2 函数的基本性质备课课件ppt,共38页。PPT课件主要包含了预学案,共学案,函数的奇偶性❶,f-x=fx,答案C,答案A,答案D,答案B等内容,欢迎下载使用。

    人教A版 (2019)必修 第一册3.2 函数的基本性质说课ppt课件: 这是一份人教A版 (2019)必修 第一册3.2 函数的基本性质说课ppt课件,共29页。PPT课件主要包含了f-x=fx,奇偶性,奇函数等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map