







沪教版高中三年级 第一学期14.2空间直线与直线的位置关系说课ppt课件
展开一、教学目标1、知识与技能:(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。2、过程与方法:(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。3、情感与价值:让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。难点:异面直线所成角的计算。三、学法与教法1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。2、教法:探究交流法四、教学过程
1.同一平面内的两条直线有哪几种位 置关系?
2.空间中的两条不同直线除了平行和相交这两种位置关系外,还有什么位置关系呢?
知识探究(一):异面直线的概念
思考1:教室内的日光灯管所在的直线与黑板的左右两侧所在的直线,既不相交,也不平行;天安门广场上,旗杆所在的直线与长安街所在的直线,它们既不相交,也不平行.你还能举出这样的例子吗?
思考2:如图, 长方体ABCD-A′B′C′D′中,线段A′B所在直线分别与线段CD′所在直线,线段BC所在直线,线段CD所在直线的位置关系如何?
思考3:我们把上图中直线A′B与直线CD叫做异面直线,一般地,从字面上怎样理解异面直线?
思考4:为了表示异面直线a,b不共面的特点,作图时,通常用一个或两个平面衬托,如图.
关于异面直线的定义,你认为下列哪个说法最合适? A. 空间中既不平行又不相交的两条直线; B. 平面内的一条直线和这平面外的一条直 线; C. 分别在不同平面内的两条直线; D. 不在同一个平面内的两条直线; E. 不同在任何一个平面内的两条直线.
思考5:空间中的直线与直线之间有几种位置关系?它们各有什么特点?
不同在任何一个平面内,没有公共点
同一平面内,有且只有一个公共点;
同一平面内,没有公共点;
知识探究(二):三线平行公理
思考1:设直线a//b,将直线a在空间中作平行移动,在平移过程中a与b仍保持平行吗 ?
思考2:如图, 在长方体ABCD—A′B′C′D′中,BB′∥AA′,DD′∥AA′,那么BB′与DD′平行吗 ?
思考3:取一块长方形纸板ABCD,E,F分别为AB,CD的中点,将纸板沿EF折起,在空间中直线AD与BC的位置关系如何 ?
思考4:通过上述实验可以得到什么结论?
公理4 平行于同一直线的两条直线互相平行.
思考5:公理4叫做三线平行公理,它说明空间平行直线具有传递性,在逻辑推理中公理4有何理论作用?
知识探究(三):等角定理
思考1:在平面上,如果一个角的两边与另一个角的两边分别平行,那么这两个角的大小有什么关系?
思考2: 如图,四棱柱ABCD--A′B′C′D′ 的底面是平行四边形,∠ADC与∠A′D′C′, ∠ADC与∠B′A′D′的两边分别对应平行,这两组角的大小关系如何 ?
思考3:如图,在空间中AB// A′B′,AC// A′C′,你能证明∠BAC与∠B′A′C′ 相等吗?
思考4:综上分析我们可以得到什么定理?
定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
思考5:上面的定理称为等角定理,在等角定理中,你能进一步指出两个角相等的条件吗?
例1 如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有多少对?
例2 如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点. (1) 求证:四边形EFGH是平行四边形. (2) 若AC=BD,那么四边形EFGH是什么图形?
沪教版高中三年级 第一学期14.2空间直线与直线的位置关系教案配套ppt课件: 这是一份沪教版高中三年级 第一学期14.2空间直线与直线的位置关系教案配套ppt课件,共40页。
数学14.2空间直线与直线的位置关系集体备课ppt课件: 这是一份数学14.2空间直线与直线的位置关系集体备课ppt课件,共15页。PPT课件主要包含了一平面,正视图,竖直放置,水平放置,相交平面的画法,点B在平面a外,点Q不在直线l上,点与面,点与线,线与面等内容,欢迎下载使用。
高中14.2空间直线与直线的位置关系课堂教学ppt课件: 这是一份高中14.2空间直线与直线的位置关系课堂教学ppt课件,共7页。