高中沪教版12.8抛物线的性质教案
展开8.6 抛物线的简单几何性质
我们根据抛物线的标准方程
y2=2px(p>0) ①
来研究它的几何性质.
1.范围
因为p>0,由方程①可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
2.对称性
以-y代y,方程①不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
3.顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程①中,当y=0时,x=0,因此抛物线①的顶点就是坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
例1 已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过
解:因为抛物线关于x轴对称,它的顶点在原点,并且经过点M(2,
y2=2px(p>0).
因为点M在抛物线上,所以
即
p=2
因此所求方程是
y2=4x.
的范围内几个点的坐标,得
描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(图8-23).
在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.
这就是标准方程中2p的一种几何意义(图8-24).利用抛物线的几何性
抛物线基本特征的草图.
例2 探照灯反射镜的轴截面是抛物线的一部分(图8-25(1)),光源位于抛物线的焦点处.已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置.
解:如图8-25(2),在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点 (即抛物线的顶点)与原点重合,x轴垂直于灯口直径.
设抛物线的标准方程是y2=2px(p>0).由已知条件可得点A的坐标是(40,30),代入方程,得
302=2p×40,
练习
1.求适合下列条件的抛物线方程:
(1)顶点在原点,关于x轴对称,并且经过点M(5,-4);
(2)顶点在原点,焦点是F(0,5);
(3)顶点在原点,准线是x=4;
(4)焦点是F(0,-8),准线是y=8.
小结:
1、抛物线的几何性质
2、在解题过程中要注意利用数形结合的数学思想
作业:
课本P123 1、2、3
沪教版高中二年级 第二学期12.6双曲线的性质教案: 这是一份沪教版高中二年级 第二学期12.6双曲线的性质教案,共3页。教案主要包含了复习与引入过程,简单实验,新课讲授过程等内容,欢迎下载使用。
数学高中一年级 第二学期6.2正切函数的图像与性质教学设计: 这是一份数学高中一年级 第二学期6.2正切函数的图像与性质教学设计,共9页。教案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学用具准备,教学流程设计,教学过程设计,教学设计说明等内容,欢迎下载使用。
沪教版高中二年级 第二学期12.6双曲线的性质教学设计: 这是一份沪教版高中二年级 第二学期12.6双曲线的性质教学设计,共8页。教案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学流程设计,教学过程设计,教学设计说明等内容,欢迎下载使用。