年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高一下册数学教案:5.2《同角三角比的关系与诱导公式》(2)(沪教版)

    高一下册数学教案:5.2《同角三角比的关系与诱导公式》(2)(沪教版)第1页
    高一下册数学教案:5.2《同角三角比的关系与诱导公式》(2)(沪教版)第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学沪教版高中一年级 第二学期5.2任意角的三角比教案

    展开

    这是一份高中数学沪教版高中一年级 第二学期5.2任意角的三角比教案,共5页。教案主要包含了教学目标设计,教学重点及难点,教学流程设计,教学过程设计等内容,欢迎下载使用。
    5.3(2)同角三角比的关系与诱导公式                            上海市杨浦高级中学  江海涛一、教学目标设计     1.掌握诱导公式的推导方法和记忆方法;2.会运用这些公式求解任意角的三角比的值,会由三角比的值,求特殊角,并会化简单的三角比的关系式;3.通过公式的探求与应用培养思维的严密性.三、教学重点及难点      重点:诱导公式难点:诱导公式的灵活应用四、教学流程设计五、教学过程设计一、 复习引入   1.公式一:  (其中用角度可写成:                   (其中   2 .讨论公式一的作用:把任意角的正弦、余弦、正切化为0º―360º之间角的正弦、余弦、正切,其方法是先在0º―360º内找出与角终边相同的角,再把它写成诱导公式一的形式,然后得出结果.这组公式可以统一概括为的形式,上述一组公式叫做任意角三角比的第一组诱导公式,其特征是:等号两边是同名三角比,且符号都为正.说明]运用公式时,注意弧度角度两种度量制不要混用,如写成是不对的.  二、学习新课1.公式推导公式二:             它说明角-与角的正弦值互为相反数,而它们的余弦值相等.这是因为,若角的终边与单位圆交于点P(x,y),则角-的终边与单位圆的交点必为P´ (x,-y)(如图1).由正弦、余弦三角比的定义,即可得sin=y   cos=x,sin(-)=-y,  cos(-)=x,所以:sin(-)= -sin, cos(-)= cosα由三角比的商数关系,得:      类似可得这组公式叫任意角三角比的第二组诱导公式    练习:求的正弦、余弦、正切和余切的值.[说明]公式二也可以由特殊到一般,既从特殊三角比的计算,猜测出公式,再证明.公式三:                                用角度可表示如下:                                                          它刻画了角180º+与角的正弦值(或余弦值)之间的关系,这个关系是:以角终边的反向延长线为终边的角的正弦值(或余弦值)与角的正弦值(或余弦值)是一对相反数.这是因为若设的终边与单位圆交于点P( x,y),则角终边的反向延长线,即180º+角的终边与单位圆的交点必为P´(-x,-y)(如图2).由正弦、余弦三角比的定义,即可得sin=y,              cos=x,sin(180º+)=-y, cos(180º+)=-x, 所以 :sin(180º+)=-sincos(180º+)=-cos[说明]公式二、三的获得主要借助于单位圆及正弦、余弦比的定义.根据点P的坐标准确地确定点P´的坐标是关键,这里充分利用了对称的性质.直观的对称形象为我们准确写出P´的坐标铺平了道路,体现了数形结合这一数学思想的优越性.练习:求下列三角比的值: (1)     (2)分析:本题是诱导公式二的巩固性练习题.求解时,只须设法将所给角分解成180º+或(π+),为锐角即可.:(1cos210º=cos(180º+30º)=cos30º=(2)sin=sin()=sin=.公式四        把第三组公式中的换成,得第四组诱导公式:                                                                [说明]这组公式均可由前面学过的诱导公式直接推出,体现了把未知问题化为已知问题处理这一化归的数学思想.公式的推导并不难,然而推导中的化归意识和策略是值得我们关注的.四组诱导公式可概括为:k·360º+(kZ),-,180º±,360º-的三角比值,等于的同名三角比的值,前面加上一个把看成锐角时原三角比的符号.[说明]这里的同名三角比值是指等号两边的三角比名称相同;看成锐角是指原本是任意角,这里只是把它视为锐角处理;前面加上一个……符号是指的同名三角比值未必就是最后结果,前面还应添上一个符号(正号或负号,主要是负号,正号可省略),而这个符号是把任意角视为锐角情况下的原三角比的符号.应注意讲清这句话中每一词语的含义,特别要讲清为什么要把任意角α看成锐角.建议通过实例分析说明.练习:求下列各式的值:(1)sin()(2)cos(60º)sin(210º)分析:本题是诱导公式二、三的巩固性练习题.求解时一般先用诱导公式三把负角的正弦、余弦化为正角的正弦、余弦,然后再用诱导公式二把它们化为锐角的正弦、余弦来求.解:(1sin()=sin()=sin=(2)原式=cos60º+sin(180º+30º)=cos60ºsin30º==02.例题分析例1:利用诱导公式,求下列各三角比:(1)     (2)例2化简:例3根据条件,求角(1)      已知(2)已知[说明]由三角比求特殊角的问题,是个问题,对学生是个难点问题,教师可先缩小范围,如考虑在[0,]上,求角,再考虑等.三、巩固练习P49  练习  5.3(2)四、课堂小结通过本节课的教学,我们获得了诱导公式.值得注意的是公式右端符号的确定.在运用诱导公式进行三角比的求值或化简中,我们又一次使用了转化的数学思想.通过进行角的适当配凑,使之符合诱导公式中角的结构特征,培养了我们思维的灵活性.五、作业布置习题5.3  A组:1;4(1)(2);5         B组:1;4    

    相关教案

    沪教版高中一年级 第二学期5.2任意角的三角比教案:

    这是一份沪教版高中一年级 第二学期5.2任意角的三角比教案,共6页。教案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学流程设计,教学过程设计,教学设计说明等内容,欢迎下载使用。

    高中数学沪教版高中一年级 第二学期5.2任意角的三角比教案及反思:

    这是一份高中数学沪教版高中一年级 第二学期5.2任意角的三角比教案及反思,共6页。教案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学流程设计,教学过程设计,教学设计说明等内容,欢迎下载使用。

    高中沪教版5.2任意角的三角比教学设计及反思:

    这是一份高中沪教版5.2任意角的三角比教学设计及反思,共6页。教案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学流程设计,教学过程设计,教学设计说明等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map