沪教版高中二年级 第二学期12.6双曲线的性质教案
展开第二章 圆锥曲线与方程2.2.1 抛物线及其标准方程
一、复习与引入过程
回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,
当0<e<1时是椭圆,
那么当e=1时,它又是什么曲线?
二、简单实验
如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.
三、新课讲授过程
(i)由上面的探究过程得出抛物线的定义
《板书》平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
(ii) 抛物线标准方程的推导过程
引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.
由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):
将上表画在小黑板上,讲解时出示小黑板,并讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.
(iii)例题讲解与引申
例1、(1)已知抛物线的标准方程是=6x,求它的焦点坐标和准线方程
(2)已知抛物线的焦点是F(0,-2),求它的标准方程
解 (1)因为p=3,所以抛物线的焦点坐标是(3/2,0)准线方程是x=-3/2
(2)因为抛物线的焦点在轴的负半轴上,且p/2=2,p=4,所以抛物线的标准方程是=-8y
例2一种卫星接收天线的轴截面如图所示。卫星拨束近似平行状态社如轴截面为抛物线的接受天线,经反射聚焦到焦点处。已知接收天线的口径为4.8m深度为0.5m,求抛物线的标准方程和焦点坐标。
解;设抛物线的标准方程是=2px (p>0)。有已知条件可得,点A的坐标是(0.5,2.4)代入方程,得2.4=2p*0.5即=5.76
所以,抛物线的标准方程是=11.52x,焦点坐标是(2.88,0)
练习:第72页1、2、3、
作业:第78页1、2、3、4、
高中数学沪教版高中二年级 第二学期12.5双曲线的标准方程教学设计: 这是一份高中数学沪教版高中二年级 第二学期12.5双曲线的标准方程教学设计,共3页。
沪教版高中二年级 第二学期13.4复数的乘法与除法教案: 这是一份沪教版高中二年级 第二学期13.4复数的乘法与除法教案,共3页。教案主要包含了教学目标,教学重点,教学方法,教学过程,教后反思等内容,欢迎下载使用。
沪教版高中二年级 第二学期12.6双曲线的性质教学设计: 这是一份沪教版高中二年级 第二学期12.6双曲线的性质教学设计,共8页。教案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学流程设计,教学过程设计,教学设计说明等内容,欢迎下载使用。