


2021学年7.1数列课堂检测
展开
这是一份2021学年7.1数列课堂检测,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
选修2-2 2. 3 数学归纳法 一、选择题1.用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证不等式( )A.1+<2 B.1++<2C.1++<3 D.1+++<3[答案] B[解析] ∵n∈N*,n>1,∴n取第一个自然数为2,左端分母最大的项为=,故选B.2.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1时,左边所得的项为( )A.1 B.1+a+a2C.1+a D.1+a+a2+a3[答案] B[解析] 因为当n=1时,an+1=a2,所以此时式子左边=1+a+a2.故应选B.3.设f(n)=++…+(n∈N*),那么f(n+1)-f(n)等于( )A. B.C.+ D.-[答案] D[解析] f(n+1)-f(n)=-=+-=-.4.某个命题与自然数n有关,若n=k(k∈N*)时,该命题成立,那么可推得n=k+1时该命题也成立.现在已知当n=5时,该命题不成立,那么可推得( )A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析] 原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是( )A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析] ∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为( )A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2[答案] C[解析] 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证( )A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析] 假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为( )A.30 B.26C.36 D.6[答案] C[解析] 因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36.9.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2、a3、a4,猜想an=( )A. B.C. D.[答案] B[解析] 由Sn=n2an知Sn+1=(n+1)2an+1∴Sn+1-Sn=(n+1)2an+1-n2an∴an+1=(n+1)2an+1-n2an∴an+1=an (n≥2).当n=2时,S2=4a2,又S2=a1+a2,∴a2==a3=a2=,a4=a3=.由a1=1,a2=,a3=,a4=猜想an=,故选B.10.对于不等式≤n+1(n∈N+),某学生的证明过程如下:(1)当n=1时,≤1+1,不等式成立.(2)假设n=k(k∈N+)时,不等式成立,即<k+1,则n=k+1时,=<==(k+1)+1,∴当n=k+1时,不等式成立,上述证法( )A.过程全都正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析] n=1的验证及归纳假设都正确,但从n=k到n=k+1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步的验证为________.[答案] 当n=1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n=1时,左≥右,不等式成立,∵n∈N*,∴第一步的验证为n=1的情形.12.已知数列,,,…,,通过计算得S1=,S2=,S3=,由此可猜测Sn=________.[答案] [解析] 解法1:通过计算易得答案.解法2:Sn=+++…+=+++…+=1-=.13.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.[答案] 5[解析] 当n=1时,36+a3能被14整除的数为a=3或5,当a=3时且n=3时,310+35不能被14整除,故a=5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.(1)当n0=________时,左边=____________,右边=______________________;当n=k时,等式左边共有________________项,第(k-1)项是__________________.(2)假设n=k时命题成立,即_____________________________________成立.(3)当n=k+1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k;(k-1)[3(k-1)+1](2)1×4+2×7+3×10+…+k(3k+1)=k(k+1)2(3)1×4+2×7+…+(k+1)[3(k+1)+1]=(k+1)[(k+1)+1]2;(k+1)[3(k+1)+1][解析] 由数学归纳法的法则易知.三、解答题15.求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).[证明] ①n=1时,左边=12-22=-3,右边=-3,等式成立.②假设n=k时,等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2.当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n=k+1时,等式也成立.由①②得,等式对任何n∈N*都成立.16.求证:+++…+>(n≥2).[证明] ①当n=2时,左=>0=右,∴不等式成立.②假设当n=k(k≥2,k∈N*)时,不等式成立.即++…+>成立.那么n=k+1时,++…+++…+>++…+>+++…+=+=,∴当n=k+1时,不等式成立.据①②可知,不等式对一切n∈N*且n≥2时成立.17.在平面内有n条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n条直线将它们所在的平面分成个区域.[证明] (1)n=2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n=k(k≥2)时,k条直线将平面分成块不同的区域,命题成立.当n=k+1时,设其中的一条直线为l,其余k条直线将平面分成块区域,直线l与其余k条直线相交,得到k个不同的交点,这k个点将l分成k+1段,每段都将它所在的区域分成两部分,故新增区域k+1块.从而k+1条直线将平面分成+k+1=块区域.所以n=k+1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n+2与n2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n=1时,21+2=4>n2=1,当n=2时,22+2=6>n2=4,当n=3时,23+2=10>n2=9,当n=4时,24+2=18>n2=16,由此可以猜想,2n+2>n2(n∈N*)成立下面用数学归纳法证明:(1)当n=1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n=2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.
相关试卷
这是一份高中数学沪教版高中二年级 第一学期10.2程序框图一课一练,共10页。试卷主要包含了下面对算法描述正确的一项是,算法等内容,欢迎下载使用。
这是一份高中数学沪教版高中二年级 第一学期10.2程序框图课堂检测,共3页。试卷主要包含了根据流程图等内容,欢迎下载使用。
这是一份高中沪教版10.1算法的概念同步测试题,共4页。