高中数学湘教版必修12.1指数函数学案
展开指数函数导学案
【学习导航】
学习要求:
1、巩固指数函数的图象及其性质;
2、掌握由指数函数和其他简单函数组成的复合函数性质;
【互动探究】
一、 复合函数的定义域与值域
例1、求下列函数的定义域与值域。
(1)y=;
(2)y=;
(3)y=
二、利用复合函数单调性来解题例2、求函数y=的单调区间。
点评:y=a的单调性由a和u=f(x)两函数在相应区间上单调性确定的,遵循“同增异减”法则。
三、利用图象的性质比较大小
例3、已知函数f(x)=ax(a>0,且a≠1),根据图象判断[f(x1)+f(x2)]与f()的大小,并加以证明。
四、分类讨论思想在解题中的应用
例4、已知f(x)=(ex-a)+ (e-x-a)(a0)。
(1) f(x)将表示成u= 的函数;
(2) 求f(x)的最小值
思维分析:平方展开重新配方,就可以得到所求函数的形式;然后根据二次函数的知识确定最值。
点评:这是复合函数求最值问题,为了求得最值,通过换元转化为二次函数,再由二次函数在区间上的单调性确定最值。
【迁移应用】
1、求下列函数定义域和值域.
(1)y=;
(2)y=
2、求函数y=的单调区间.
3、已知f(x)=(a>0且a)
(1)求f(x)的定义域和值域;
(2)判断f(x)与的关系;
(3)讨论f(x)的单调性;
答案:
例1、解关于x的对数不等式;
2 loga (x-4)>loga(x-2).
思维分析:可以去掉对数符号,化为一般的代数不等式求解;同时考虑到底数a的取值范围不确定,故应进行分类讨论。
解:原不等式等价于
(1)当a>1时,又等价于
解之,得x>6。
(2)当0<a<1时,又等价于
解之,得4<x<6.
综上,不等式的解集,当a>1时,为(6,+ ∞);
当0<a<1时,为(4,6).
例2、已知函数f(x)的定义域是(0,+∞),满足f(4)=1,f(xy)=f(x)+f(y).(1)证明f(1)=0;(2)求f(16);(3)试证f(xn)=nf(x),n∈N*.
思维分析:这显然是一个抽象函数。根据题目给定的三个条件,可以将对数函数y=log4x作为该函数的原型,从而找到问题的解决思路与方法。
(1)证明:令x=y=1,则得f(1)=f(1)+f(1),故f(1)=0;
(2)解:令x=y=4,则有f(16)=f(4×4)=f(4)+f(4)=1+1=2;
(3)证明:f(xn)=f(x·x·…·x) (n个x)
=f(x)+f(x)+…+f(x)=nf(x) (n个f(x))
例3: 已知:在上恒有,求实数的取值范围。
分析:去掉绝对值符号,转化为含对数式的不等式。
【解】∵,∴当时,,由在上恒成立 ,得 在上恒成立,
∴,∴ (1)
当时,,由在上恒成立 ,得 在上恒成立,∴,
∴(2)
由(1)(2)可知,实数的取值范围为
思维点拔:
本题的特点是给出了自变量的取值范围,求字母的取值范围,它与解不等式有本质的区别,在上恒成立,是指在
上的所有值都大于1,这是一个不定问题,但转化为函数的最大(最小)值后,问题就简单了,这类问题的一般结论是:
(1)(为常数,)恒成立,
(2)(为常数,)恒成立,
利用这两个结论,可以把“不定”问题转化为“定”的问题。
1、解不等式
解答:{x|-1<x<-}∪{x|<x<1}
2、若函数f(x)满足f(x+y)+f(x-y)=f(x2-y2),则f(x)可以是( )
A.f(x)=2x B.f(x)=x2 C.f(x)=log2x D.f(x)=2x
解答:C
3、已知函数f(x)的定义域是(0,+∞),且对任意的x、y>0满足f()=f(x)-f(y),当x>1时有f(x)<0,试判断f(x)的单调性并证明.
解答:f(x)在(0,+∞)上是减函数。证明略。
4、已知函数,
当时,恒成立,求实数的取值范围。
解:要使当时,恒成立,即要:当恒成立
令
(1) 当,即时,得
(2) 当,即时,得
(舍去)
(3) 当,即时,得
∴
由(1)(2)(3)可知,实数的取值范围为。
数学必修12.1指数函数学案设计: 这是一份数学必修12.1指数函数学案设计,共2页。学案主要包含了学习目标,学法指导,教学过程,课堂小练,课堂小结,学习感悟,作业等内容,欢迎下载使用。
高中数学湘教版必修12.1指数函数导学案: 这是一份高中数学湘教版必修12.1指数函数导学案,共2页。
高中数学2.1指数函数学案: 这是一份高中数学2.1指数函数学案,共6页。