高中数学北师大版必修53.1基本不等式教学设计
展开
这是一份高中数学北师大版必修53.1基本不等式教学设计,共1页。
3.3.2 基本不等式与最大(小)值本节教材分析教材已开始给出了一个具体的把铁丝弯成矩形的例子,目的是使学生先有一个感性的认识,为引出后面的命题做好铺垫,对命题并未给出严格的证明,只要学生能够从这个例子抽象概括出结论即可.例2、例3是代数中两个直接应用均值不等式求最值的例子,通过这两个例子,让学生掌握利用均值不等式求最值的步骤;例4和例5是在实际问题中,利用基本不等式求最值的例子,体现了数学知识应用的广泛性..三维目标1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 教学重点:掌握基本不等式,会用此不等式求某些函数的最值。教学难点: 利用基本不等式求最大值、最小值。教学建议: 利用均值不等式求最值的步骤,让学生通过做题归纳总结;例4和例5两道实际应用题,在教学中应让学生注意以下几点:(1)正确理解题意,设变量.设变量时,一般可把欲求最大(小)值的变量视为函数;(2)建立函数关系,把实际问题转化为求函数的最大(小)值问题;(3)在允许的范围内,求出最值;(4)根据问题实际写出答案.新课导入设计 导入一[复习导入]让学生会议上节课我们探究的基本不等式,强调不等方向,等号成立条件,字母范围. 本节课我们探讨基本不等式的应用,教师由此引入新课.导入二[直接导入]通过上节课的探究证明,我们熟悉了不等式的一些证明方法.节课我们进一步熟悉利用基本不等式解决函数的最值问题的思路。教师打开多媒体课件,从而展开新课.
相关教案
这是一份高中数学北师大版 (2019)必修 第一册3.2 基本不等式第2课时教案
这是一份人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用5.3 导数在研究函数中的应用教学设计及反思,共9页。教案主要包含了内容与内容解析等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册5.3 导数在研究函数中的应用教案,共10页。教案主要包含了探究新知,典例解析,小结,课时练等内容,欢迎下载使用。