搜索
    上传资料 赚现金
    英语朗读宝

    高二数学教案 第一章 概率与统计(第3课)《离散型随机变量的期望与方差》(1) 湘教版选修2

    高二数学教案 第一章 概率与统计(第3课)《离散型随机变量的期望与方差》(1) 湘教版选修2第1页
    高二数学教案 第一章 概率与统计(第3课)《离散型随机变量的期望与方差》(1) 湘教版选修2第2页
    高二数学教案 第一章 概率与统计(第3课)《离散型随机变量的期望与方差》(1) 湘教版选修2第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高二数学教案 第一章 概率与统计(第3课)《离散型随机变量的期望与方差》(1) 湘教版选修2

    展开

         1.2离散型随机变量的期望与方差(一)教学目的:1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.  理解公式E(aξ+b=aEξ+b,以及ξB(n,p),则Eξ=np.能熟练地应用它们求相应的离散型随机变量的期望教学重点:离散型随机变量的期望的概念教学难点:根据离散型随机变量的分布列求出期望授课类型:新授课 课时安排:2课时     :多媒体、实物投影仪 教学过程一、复习引入:1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξη等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量   3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量   4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出   是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)     5. 分布列:设离散型随机变量ξ可能取得值为x1x2x3ξ取每一个值xii=1,2,)的概率为,则称表ξx1x2xiPP1P2Pi为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质: Pi0,i=1,2,P1+P2+=1.7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,n).于是得到随机变量ξ的概率分布如下:ξ01knP称这样的随机变量ξ服从二项分布,记作ξB(np),其中np为参数,并记b(knp).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ是一个正整数的离散型随机变量.表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么k=0,1,2, ).于是得到随机变量ξ的概率分布如下:ξ123kP称这样的随机变量ξ服从几何分布记作g(kp)= ,其中k=0,1,2, 二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ45678910P0.020.040.060.090.280.290.22n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的期望 根据射手射击所得环数ξ的分布列,我们可以估计,在n次射击中,预计大约有    次得4环;    次得5环;…………  次得10环.故在n次射击的总环数大约为从而,预计n次射击的平均环数约为这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个i=0,1,2,,10),我们可以同样预计他任意n次射击的平均环数:1.数学期望:  一般地,若离散型随机变量ξ的概率分布为ξx1x2xnPp1p2pn则称   ξ的数学期望,简称期望  2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 平均数均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令,则有,所以ξ的数学期望又称为平均数均值 4. 期望的一个性质:(ab是常数),ξ是随机变量,则η也是随机变量,它们的分布列为ξx1x2xnηPp1p2pn于是       ))       由此,我们得到了期望的一个性质:5.若ξB(n,p),则Eξ=np 证明如下:  0×+1×+2×k×n×      故  若ξB(np),则np三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:因为所以例2. 随机抛掷一枚骰子,求所得骰子点数的期望解:=3.5例3. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,,10)取出次品的概率:=1,2,,10)需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:123456789100.150.12750.10840.0920.07830.06660.05660.04810.04090.2316根据以上的概率分布,可得的期望例4. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B(20,0.9),, 由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是: 例5.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P所以    1×+2×+3×+4×+5×+6×=(1+2+3+4+5+6)×=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.例6.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η()求租车费η关于行车路程ξ的关系式;()若随机变量ξ的分布列为ξ15161718P0.10.50.30.1求所收租车费η的数学期望.()已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?解:()依题意得 η=2(ξ-4)10,即 η=2ξ+2()  η=2ξ+2  2Eξ+2=34.8  (元)所收租车费η的数学期望为34.8元.  ()38=2ξ+2,得ξ=185(18-15)=15  所以出租车在途中因故停车累计最多15分钟 四、课堂练习1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则      A.4;  B.5;  C.4.5;  D.4.75答案:C  2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求他罚球1次的得分ξ的数学期望;他罚球2次的得分η的数学期望;他罚球3次的得分ξ的数学期望.解:因为,所以1×+0×η的概率分布为η012P所以    0×+1×+2×=1.4.    ξ的概率分布为ξ23P   所以  0×+1×+2×=2.1.3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件ξ=k发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求.  解:记事件A在所取的1升水中含一个大肠杆菌,则P(A)=     P(ξ=k)=Pn(k)=C)k(1-)n-kk=0,1,2,….,n).   ξB(n,),故  =n×=   五、小结 :(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:理解ξ的意义,写出ξ可能取的全部值;ξ取各个值的概率,写出分布列;根据分布列,由期望的定义求出Eξ  公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np 六、课后作业1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是          (用数字作答)解:令取取黄球个数 (=0、1、2)的要布列为 012p于是 E()=0×+1×+2×=0.8故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数的概率分布列的数学期望解:依题意的取值为0、1、2、3、4=0时,取2黑          p(=0)==1时,取1黑1白      p(=1)==2时,取2白或1红1黑p(=2)= +=3时,取1白1红,概率p(=3)= =4时,取2红,概率p(=4)=  01234p  分布列为  (2)期望E=0×+1×+2×+3×+4×=3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1p2p3,求试验中三台投影仪产生故障的数学期望解:设表示产生故障的仪器数,Ai表示第i台仪器出现故障(i=1、2、3)表示第i台仪器不出现故障,则:p(=1)=p(A1··)+ p(·A2·)+ p(··A3)=p1(1p2) (1p3)+ p2(1p1) (1p3)+ p3(1p1) (1p2)= p1+ p2+p32p1p22p2p32p3p1+3p1p2p3p(=2)=p(A1· A2·)+ p(A1··)+ p(·A2·A3)  = p1p2 (1p3)+ p1p3(1p2)+ p2p3(1p1)= p1p2+ p1p3+ p2p3-3p1p2p3p(=3)=p(A1· A2·A3)= p1p2p3       =1×p(=1)+2×p(=2)+3×p(=3)= p1+p2+p3 注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是   1.2   解:从5个球中同时取出2个球,出现红球的分布列为012P5.  两个代表队进行乒乓球对抗赛,每队三名队员,队队员是队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率B队队员胜的概率A­1­B1A­2­B2A­3­B3现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为1)求的概率分布;     2)求解:(的可能取值分别为3,2,1,0根据题意知,所以因为,所以 七、板书设计(略) 八、课后记:    

    • 精品推荐
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map