高二数学:6.1《空间的几何体》学案(湘教版必修三)教案
展开第一章 立体几何初步
一、知识结构
二、重点难点
重点:空间直线,平面的位置关系。柱、锥、台、球的表面积和体积的计算公式。平行、垂直的定义,判定和性质。
难点:柱、锥、台、球的结构特征的概括。文字语言,图形语言和符号语言的转化。平行,垂直判定与性质定理证明与应用。
第一课时 棱柱、棱锥、棱台
【学习导航】
知识网络
学习要求
1.初步理解棱柱、棱锥、棱台的概念。掌握它们的形成特点。
2.了解棱柱、棱锥、棱台中一些常用名称的含义。
3.了解棱柱、棱锥、棱台这几种几何体简单作图方法
4.了解多面体的概念和分类.
自学评价
1. 棱柱的概念:
表示法:
思考:棱柱的特点:.
【答】
2. 棱锥的概念:
表示法:
思考:棱锥的特点:.
【答】
3.棱台的概念:
表示法:
思考:棱台的特点:.
【答】
4.多面体的概念:
5.多面体的分类:
⑴棱柱的分类
⑵棱锥的分类
⑶棱台的分类
【精典范例】
例1:设有三个命题:
甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;
乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;
丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是 ( )
A.0 B. 1 C. 2 D. 3
例2:画一个四棱柱和一个三棱台。
【解】四棱柱的作法:
⑴画上四棱柱的底面----画一个四边形;
⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;
⑶画下底面------顺次连结这些线段的另一个端点
⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.
学生质疑 |
|
教师释疑 |
|
点评:(1)被遮挡的线要画成虚线(2)画台由锥截得
思维点拔:
解柱、锥、台概念性问题和画图需要:
(1).准确地理解柱、锥、台的定义
(2).灵活理解柱、锥、台的特点:
例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗?
答:
点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。
追踪训练一
1. 如图,四棱柱的六个面都是平行四边形。这个四棱柱可以由哪个平面图形按怎样的方向平移得到?
答
2.右图中的几何体是不是棱台?为什么?
答:
3.多面体至少有几个面?这个多面体是怎样的几何体。