高中数学湘教版必修25.3简单的三角恒等变换教学设计及反思
展开1进一步熟悉正、余弦定理内容;
2能够应用正、余弦定理进行边角关系的相互转化;
3能够利用正、余弦定理判断三角形的形状;
4能够利用正、余弦定理证明三角形中的三角恒等式
教学重点:利用正、余弦定理进行边角互换时的转化方向
教学难点:三角恒等式证明中结论与条件之间的内在联系的寻求
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学方法:启发引导式
1启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;
2引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用
教学过程:
一、复习引入:
正弦定理:
余弦定理:
,
二、讲授新课:
1正余弦定理的边角互换功能
对于正、余弦定理,同学们已经开始熟悉,在解三角形的问题中常会用到它其实,在涉及到三角形的其他问题中,也常会用到它们两个定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决
例1已知a、b为△ABC的边,A、B分别是a、b的对角,且,求的值
解:∵(这是角的关系),
∴ (这是边的关系)于是,由合比定理得
例2已知△ABC中,三边a、b、c所对的角分别是A、B、C,且a、b、c成等差数列
求证:sinA+sinC=2sinB
证明:∵a、b、c成等差数列,
∴a+c=2b(这是边的关系)①
又②
③
将②、③代入①,得整理得sinA+sinC=2sinB(这是角的关系)
2正、余弦定理的巧用
某些三角习题的化简和求解,若能巧用正、余弦定理,则可避免许多繁杂的运算,从而使问题较轻松地获得解决,现举例说明如下:
例3求sin220°+cs280°+sin20°cs80°的值
解:原式=sin220°+sin210°-2sin20°sin10°cs150°
∵20°+10°+150°=180°,
∴20°、10°、150°可看作一个三角形的三个内角
设这三个内角所对的边依次是a、b、c,由余弦定理得:a2+b2-2abcs150°=c2(※)
而由正弦定理知:a=2Rsin20°,b=2Rsin10°,c=2Rsin150°,代入(※)式得:
sin220°+sin210°-2sin20°sin10°cs150°=sin2150°=
∴原式=
例4在△ABC中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的三边长 ()
分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系其中利用正弦二倍角展开后出现了csα,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的
解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则
,①
又由余弦定理可得x2=(x+1)2+(x+2)2-2(x+1)(x+2)csα
将①代入②整理得:x2-3x-4=0
解之得x1=4,x2=-1(舍)
所以此三角形三边长为4,5,6
评述: 此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程
例5已知三角形的一个角为60°,面积为10cm2,周长为20cm,求此三角形的各边长
分析:此题所给的题设条件除一个角外,面积、周长都不是构成三角形的基本元素,但是都与三角形的边长有关系,故可以设出边长,利用所给条件建立方程,这样由于边长为三个未知数,所以需寻求三个方程,其一可利用余弦定理由三边表示已知60°角的余弦,其二可用面积公式S△ABC=absinC表示面积,其三是周长条件应用
解:设三角形的三边长分别为a、b、c,B=60°,则依题意得
①
②
③
由①式得:b2=[20-(a+c)]2=400+a2+c2+2ac-40(a+c) ④
将②代入④得400+3ac-40(a+c)=0
再将③代入得a+c=13
由 ∴b1=7,b2=7
所以,此三角形三边长分别为5cm,7cm,8cm
评述: (1)在方程建立的过程中,应注意由余弦定理可以建立方程,也要注意含有正弦形式的面积公式的应用
(2)由条件得到的是一个三元二次方程组,要注意要求学生体会其求解的方法和思路,以提高自己的解方程及运算能力
三、课堂练习:
1在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是( )
A等边三角形B直角三角形C等腰三角形 D等腰三角形或直角三角形
2在△ABC中,若b2sin2C+c2sin2B=2bccsBcsC,则此三角形为( )
A直角三角形 B等腰三角形C等边三角形 D等腰直角三角形
3在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,则secA=
4△ABC中,,则三角形为
5在△ABC中,角A、B均为锐角且csA>sinB,则△ABC是
6已知△ABC中,,试判断△ABC的形状
7在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状
参考答案:1D 2A 3 8 4等腰三角形5钝角三角形
6等边三角形 7等腰三角形或直角三角形
四、小结 熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断
五、课后作业:
1在△ABC中,已知,求证:a2,b2,c2成等差数列
证明:由已知得sin(B+C)sin(B-C)=sin(A+B)·sin(A-B)
cs2B-cs2C=cs2A-cs2B2cs2B=cs2A+cs2C
∴2sin2B=sin2A+sin2C
由正弦定理可得2b2=a2+c2, 即a2,b2,c2成等差数列
2在△ABC中,A=30°,csB=2sinB-sinC
(1)求证:△ABC为等腰三角形;(提示B=C=75°)
(2)设D为△ABC外接圆的直径BE与AC的交点,且AB=2,求AD∶DC的值
答案:(1)略 (2)1∶
六、板书设计(略)
七、课后记:
湘教版必修23.4函数y=(“x“)的图像与性质教案: 这是一份湘教版必修23.4函数y=(“x“)的图像与性质教案,共6页。教案主要包含了讲解范例,课堂练习,课后作业,板书设计,课后记及备用资料等内容,欢迎下载使用。
高中数学湘教版必修24.1什么是向量第1课时教学设计及反思: 这是一份高中数学湘教版必修24.1什么是向量第1课时教学设计及反思,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,试题等内容,欢迎下载使用。
湘教版必修25.3简单的三角恒等变换教案: 这是一份湘教版必修25.3简单的三角恒等变换教案,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 余弦定理及其应用,课后作业,板书设计,课后记等内容,欢迎下载使用。