数学同步训练 湘教版必修5:12.2.3 《分层抽样和系统抽样》
展开1.(2011年龙岩高一检测)一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解它们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( )
A.抽签法 B.有放回抽样
C.随机数表法 D.系统抽样
解析:选D.根据抽样方法的特点可知,该抽样方法为系统抽样.
2.下列抽样试验中,最适宜用系统抽样法的是( )
A.某市的4个区共有2000名学生,这4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样
B.从某厂生产的2000个电子元件中随机抽取5个入样
C.从某厂生产的2000个电子元件中随机抽取200个入样
D.从某厂生产的20个电子元件中随机抽取5个入样
解析:选C.A总体有明显层次,不适宜用系统抽样法;B样本容量很小,适宜用随机数法;D总体容量很小,适宜用抽签法.
3.已知某单位有职工120人,其中男职工90人,现采用分层抽样(按男、女分层)抽取一个样本,若样本中有27名男职工,则样本容量为( )
A.30 B.36
C.40 D.无法确定
解析:选B.因为分层抽样中各层中的抽样比是相等的,由抽样比为27∶90=3∶10,所以样本容量为120×=36.
4.(2011年高考山东卷)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名进行调查,应在丙专业抽了的学生人数为________.
解析:由题意知,抽取比例为3∶3∶8∶6,所以应在丙专业抽取的学生人数为40×=16.
答案:16
一、选择题
1.某市场想通过检查发票及销售记录的2%来快速估计每月的销量总额.采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序往后将65号,115号,165号,…抽出,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )
A.抽签法 B.随机数法
C.系统抽样法 D.其他的抽样方法
解析:选C.上述抽样方法是将发票平均分成若干组,每组50张.从第一组中抽取15号,以后各组抽取15+50n(n∈N+)号,符合系统抽样的特点.故选C.
2.(2010年高考湖北卷)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
解析:选B.由题意知间隔为=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.
3.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为( )
A.7,5,8 B.9,5,6
C.7,5,9 D.8,5,7
解析:选B.由于样本容量与总体个体数之比为=,故各年龄段抽取的人数依次为45×=9(人),25×=5(人),20-9-5=6(人).
4.(2011年济宁高二检测)某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( )
A.①用简单随机抽样法,②用系统抽样法
B.①用分层抽样法,②用简单随机抽样法
C.①用系统抽样法,②用分层抽样法
D.①用分层抽样法,②用系统抽样法
解析:选B.对于有关抽样问题,应该准确领会各种抽样方法的含义,视具体问题特点灵活选择相应的抽样方法.①中的500户家庭收入有高收入、中等收入、低收入三个层次,个体差异明显,故宜用分层抽样;②中个体数较小,故宜用简单随机抽样.
5.(2010年高考四川卷)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )
A.12,24,15,9 B.9,12,12,7
C.8,15,12,5 D.8,16,10,6
解析:选D.由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×=8,40×=16,40×=10,40×=6.
6.从2011名学生志愿者中选取50名组成一个志愿团,若采用下面的方法选取:先用简单随机抽样从2011人中剔除11人,余下的2000人再按系统抽样的方法进行选取,则每人入选的机会( )
A.不全相等 B.均不相等
C.都相等 D.无法确定
解析:选C.系统抽样是公平的,所以每个个体被抽到的可能性都相等,与是否剔除无关.
二、填空题
7.某小礼堂有25排座位,每排20个座位.一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的25名学生进行测试,这里运用的是________抽样方法.
解析:间隔相同,符合系统抽样的定义.
答案:系统
8.某中学高一年级有400人,高二年级有320人,高三年级有280人.若该中学提取一个容量为n的样本,使每个人被抽到的可能性均为,则n=________.
解析:根据总体中个体数为N,从中逐个抽取容量为n的样本,则每个个体被抽到的可能性均为可知=,由此可得n=200.
答案:200
9.(2010年高考安徽卷)某地有居民100000户,其中普通家庭99000户,高收入家庭1000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是__________.
解析:∵990∶99000=1∶100,∴低收入家庭中拥有3套或3套以上住房的大约为50×100=5000(户).
又∵100∶1000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).
∴约有5000+700=5700(户).故=5.7%.
答案:5.7%
三、解答题
10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
解:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有
=47.5%,=10%,
解得b=50%,c=10%.
故a=100%-50%-10%=40%,
即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.
(2)游泳组中,抽取的青年人数为200××40%=60(人);抽取的中年人数为200××50%=75(人);抽取的老年人数为200××10%=15(人).
11.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1200人,户数300,每户平均人数4人;
应抽户数:30户;
抽样间隔:=40;
确定随机数字:取一张人民币,编码的后两位数为12;
确定第一样本户:编码的后两位数为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委采用了何种抽样方法?
(2)抽样过程中存在哪些问题?并修改;
(3)何处用的是简单随机抽样?
解:(1)系统抽样.
(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.
(3)确定随机数字用的是简单随机抽样,取一张人民币,编码的后两位数为12.
12.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,职员20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.
解:采用分层抽样方法.
抽取比例为:=,故:10×=2;70×=14;20×=4.
∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从职员中抽取4人.
因副处级以上干部与职员人数都较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数法抽取14人.