2013高中新课程数学(苏教版必修四) 第二课时 角的概念的推广(二)教案练习题
展开第二课时 角的概念的推广(二)
教学目标:
熟练掌握象限角的集合、轴线角的集合及终边相同的角的表示方法.
教学重点:
轴线角的集合,终边相同的角的表示方法
教学难点:
终边相同的角的表示方法
教学过程:
Ⅰ.复习回顾
请思考并回答以下问题:
1.正角、负角、零角、象限角、终边相同的角的表示方法是如何定义的?
2.角的定义只强调了射线绕端点旋转的方向,而没有谈及射线绕端点旋转的圈数,那么射线绕端点旋转的圈数对角有无影响?
3.能否说射线绕端点旋转的圈数越多,角就越大呢?
4.如图所示的∠ABC是第一象限角吗?为什么?
指出:①在角的定义里,射线绕端点旋转的圈数影响着角的
大小.②射线绕端点旋转的方向,若是逆时针方向旋转,则旋转圈
数越多,角越大;若顺时针方向旋转,则旋转圈数越多,角越小.③象限角概念中强调“角的顶点与原点重合,角的始边与x轴的非负半轴重合”这一条件.
Ⅱ.例题分析
[例1]写出终边在y轴上的角的集合(用0°到360°的角表示)
第一步:在0°到360°内找到满足上述条件的角,即90°、270°.
第二步:写出与上述角终边相同的角的集合,即
S1={β|β=90°+k·360°,k∈Z}
S2={β|β=270°+k·360°,k∈Z}
第三步:写出几个集合的并集,即
S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}
={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)· 180°,k∈Z}
={β|β=90°+180°的偶数倍}∪{β|β=90°+180°的奇数倍}
={β|β=90°+180°的整数倍}={β|β=90°+n·180°,n∈Z}
能写出终边在x轴的非负半轴、非正半轴上的角的集合吗?
终边在x轴非负半轴上的角的集合为{x|x=k·360°,k∈Z},终边在x轴非正半轴上的角的集合为{x|x=k·360°+180°,k∈Z}.
以上两个集合的并集代表什么特殊位置上的角的集合呢?
[例2]写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤β≤
720°的元素β写出来:
(1)60° (2)-21° (3)363°14′
第一步:利用终边相同的角的集合公式写出:
(1)S={β|β=60°+k·360°,k∈Z}
(2)S={β|β=-21°+k·360°,k∈Z}
(3)S={β|β=363°14′+k·360°,k∈Z}
第二步:在第一步的基础上,利用满足约束条件的不等式,对其中的k值,分别采用赋值法求解出元素β:
(1)-300°,60°,420°
(2)-21°,339°,699°
(3)-356°46′,3°14′,363°14′
题目中的k值是靠观测、试探确定的,即赋给k一个任意值m试一试,看是否满足条件,再将m增1或减1再试,直至找到合适的k的最小值(或最大值).
[例3]若α是第三象限角,试求、的范围.
分析:依据象限角的表示法将α表示出来后,再确定、的范围,再进一步判断、所在的象限.
解:∵α是第三象限角
∴k·360°+180°<α<k·360°+270°(k∈Z)
(1)k·180°+90°<<k·180°+135°(k∈Z)
当k=2n(n∈Z)时,n·360°+90°<<n·360°+135°
当k=2n+1(n∈Z)时,n·360°+270°<<n·360°+315°
∴为第二或第四象限角.
(2)k·120°+60°<<k·120°+90°(k∈Z)
当k=3n(n∈Z)时,n·360°+60°<<n·360°+90°(n∈Z)
当k=3n+1(n∈Z)时,n·360°+180°<<n·360°+210°(n∈Z)
当k=3n+2(n∈Z)时,n·360°+300°<<n·360°+330°(n∈Z)
∴为第一或第三或第四象限角.
Ⅲ.课堂练习
P7练习5
Ⅳ.课时小结
本节课的重点内容仍然是终边相同的角的集合表示,这是学习后续知识的基础,要予以足够的重视,若还有不明白的地方,请同学们再做进一步的讨论,或者提出来,老师再与你一块研究.
Ⅴ.课后作业
(一)P10习题 4、11、12.
(二)1.预习内容
课本P7~P8弧度制
2.预习提纲
弄清楚下列问题:
(1)弧度的单位符号
(2)1弧度的角的定义
(3)弧度制的定义
(4)角度与弧度的换算公式
角的概念的推广(二)
1.若α是第四象限角,则180°-α是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
2.设k∈Z,下列终边相同的角是 ( )
A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90°
C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60°
3.若90°<-α<180°,则180°-α与α的终边 ( )
A.关于x轴对称 B.关于y轴对称
C.关于原点对称 D.以上都不对
4.终边与坐标轴重合的角α的集合是 ( )
A.{α|α=k·360°,k∈Z} B.{α|α=k·180°+90°,k∈Z}
C.{α|α=k·180°,k∈Z} D.{α|α=k·90°,k∈Z}
5.若角α与β终边重合,则有 ( )
A.α-β=180° B.α+β=0
C.α-β=k·360°(k∈Z) D.α+β=k·360°(k∈Z)
6.若将时钟拨慢5分钟,则时针转了 度,分针转了 度.
7.若角α是第三象限角,则角的终边在 ,2α角的终边在 .
8.如果6α与30°角的终边相同,求适应不等式-180°<α<180°的角α的集合.
9.如果角α的终边经过点M(1,),试写出角α的集合A,并求集合A中最大的负角和绝对值最小的角.
10.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.
角的概念的推广(二)答案
1.C 2.A 3.B 4.D 5.C 6.2.5 30
7.第二或第四象限 第一或第二象限或终边在y轴的正半轴上
8.如果6α与30°角的终边相同,求适应不等式-180°<α<180°的角α的集合.
分析:由6α与30°角的终边相同,得出α的表达式是解题的关键.
解:由题意得
6α=30°+k·360°(k∈Z)
∴α=5°+k·60°
∵-180°<α<180°
∴-180°<5°+k·60°<180°,-185°<k·60°<175°
∴-<k<
∵k是整数, ∴k=-3,-2,-1,0,1,2.
分别代入α=5°+k·60°,得满足条件的α的集合为:
{-175°,-115°,-55°,5°,65°,125°}
9.如果角α的终边经过点M(1,),试写出角α的集合A,并求集合A中最大的负角和绝对值最小的角.
分析:关键是求出0°到360°范围内的角α.
解:在0°到360°范围内,由几何方法可求得α=60°.
∴A={α|α=60°+k·360°,k∈Z}
其中最大的负角为-300°(当k=-1时)
绝对值最小的角为60°(当k=0时)
10.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.
由7θ=θ+k·360°,得θ=k·60°(k∈Z)
∴θ=60°,120°,180°,240°,300°
版权所有:高考资源网(www.k s 5 u.com)