终身会员
搜索
    上传资料 赚现金
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)
    立即下载
    加入资料篮
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)01
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)02
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)03
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)04
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)05
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)06
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)07
    2012高二数学:3.4《直线与平面的垂直关系》课件(湘教版选修2-1)08
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学湘教版(2019)选择性必修 第一册3.3 抛物线备课课件ppt

    展开
    这是一份高中数学湘教版(2019)选择性必修 第一册3.3 抛物线备课课件ppt,共30页。PPT课件主要包含了课堂互动讲练,知能优化训练,课前自主学案,学习目标,平行或共线,所有的,思考感悟,斜线的射影等内容,欢迎下载使用。

    1.掌握直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理,并能灵活运用定理证明直线与平面垂直.3.理解三垂线定理及逆定理,并能应用三垂线定理及逆定理证明线面或线线垂直.
    1.所谓直线的方向向量,就是指和这条直线所对应的向量_______________的向量,一条直线的方向向量有______个.2.设直线l的方向向量为a=(x1,y1,z1),直线m的方向向量为b=(x2,y2,z2),则l⊥m⇔a⊥b⇔x1x2+y1y2+z1z2=0.
    1.直线与平面垂直(1)定义:如果一条直线l与一个平面α相交,并且垂直于平面α内__________直线,就称直线l与平面α垂直,记作l⊥α.(2)判定定理①文字语言:如果一条直线垂直于一个平面内两条________直线,那么这条直线就与这个平面垂直.②符号语言:若直线a⊂平面α,直线b⊂平面α,__________________________,则l⊥α
    l⊥a,l⊥b,a∩b=O
    如何理解直线与平面垂直的判定定理?
    2.三垂线定理:在平面内的一条直线,如果它和这个平面的一条______________垂直,那么它也和这条斜线垂直.3.三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条______垂直,那么它也和这条斜线在平面内的射影垂直.
    直线与平面垂直是直线与平面相交的一种特殊位置关系,可以理解为直线垂直于平面内的所有直线,也可理解为直线与平面所成的角为90°.
    下列命题中,真命题的个数为(  )(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行;(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直;(3)垂直于三角形两边的直线必垂直于第三边;(4)过点A垂直于直线a的所有直线都在过点A垂直于a的平面内;(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.A.1          B.2C.3 D.4
    【思路点拨】 根据直线与平面垂直的相关概念,并结合特殊的几何体,如正方体或者教室内的实物来说明.【解析】 (1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种:①平行;②异面,因此(1)假.(2)该命题的关键是这无数条直线具有怎样的位置关系.若为平行,该命题则错;若为相交,则该命题为真,正是因为这两种情况可能同时具备,因此,不说明面内这无数条直线的位置关系,该命题则为假命题.
    (3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用可知,则该直线必垂直于三角形的第三边,∴该命题真.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直.根据第一个命题知:过点A垂直于直线的平面唯一,因此,过点A且与直线a垂直的直线都在过点A且与直线a垂直的平面内,∴该命题真.
    (5)三条共点直线两两垂直,设为a,b,c,且a,b,c共点于O.∵a⊥b,a⊥c,b∩c=O,∴b、c确定一平面,设为α,则a⊥α.同理可知b垂直于a、c确定的平面,c垂直于a、b确定的平面.∴该命题真.【答案】 C【名师点评】 注意线面垂直的定义中“所有的直线”与“无数条直线”不同,其实质是直线与平面内任意一直线垂直.
    直线与平面垂直的判定定理告诉我们,可以通过直线间的垂直来证明直线与平面垂直.通常我们将其记为“线线垂直,则线面垂直”.因此,处理线面垂直转化为处理线线垂直来解决.也就是说,以后证明一条直线和一个平面垂直,只要在这个平面内找到两条相交直线和已知直线垂直即可.
    在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.【思路点拨】 解答本题从结论出发,要证BD1⊥平面ACB1,只需证明BD1垂直于平面ACB1内某两条相交直线即可.由于平面ACB1内的三条线段AC、B1C、AB1与BD1的相对位置相同,因此只须证明BD1垂直于其中的任意一条,其余的同理可证.
    【证明】 法一:连接BD,∴AC⊥BD.又∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC,又∵DD1∩BD=D,∴AC⊥平面D1DB,又∵BD1⊂平面D1DB,∴AC⊥BD1.同理可证BD1⊥AB1,又∵AB1∩AC=A,∴BD1⊥平面ACB1.
    【名师点评】 解答这类问题,往往利用转化思想:要证明线面垂直,常常先证线线垂直,而证线线垂直,通常又是借助线面垂直完成的,即它们往往是相互转化的.
    自我挑战1 如图,在正方体ABCD-A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.
    证明:在正方形B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF.∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE.∵AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,又AB∩BE=B,∴CF⊥平面EAB.
    关于定理的应用,首先是找出平面的垂线,至于射影则是由垂足,斜足来确定的,因而是第二位的,由此,我们可以得出三垂线定理证明a⊥b的一个程序:一垂、二射、三证,即:第一:找平面及平面的垂线;第二:找射影线(或斜线),这时a,b便成为平面内的一条直线及一条斜线(或射影);第三:证明射影(或斜线)与直线a垂直,从而得出a,b垂直.
    如图所示,P是△ABC所在平面外一点,且PA⊥平面ABC,若O、Q分别是△ABC和△PBC的垂心,求证:OQ⊥平面PBC.【思路点拨】 欲证OQ⊥面PBC,只要证明OQ与平面PBC内两条相交直线垂直即可,因为O、Q均为三角形的垂心,由此联想到作三角形的高线,应用三垂线定理及逆定理.
    ∴BF⊥平面PAC,则FM是BM在平面PAC上的射影,∵BM⊥PC,根据三垂线定理的逆定理,得FM⊥PC,从而PC⊥平面BFM.又OQ⊂面BFM,∴OQ⊥PC,又PC∩BC=C,∴OQ⊥平面PBC.【名师点评】 三垂线定理及其逆定理主要用于证明空间两条直线的垂直问题,对于同一平面内的两条直线垂直问题也可以用“平移法”,将其转化为空间两直线的垂直问题,用三垂线定理证明.
    自我挑战2 已知长方体AC1中,棱AB=BC=1,棱BB1=2,连接B1C,过B作B1C的垂线交CC1于E,交B1C于F.求证:A1C⊥平面EBD.
    证明:如图,连接AC,则AC⊥BD.∵AC是A1C在平面ABCD内的射影,∴A1C⊥BD.又A1B1⊥平面B1C1CB,且A1C在平面B1C1CB内的射影为B1C,∵B1C⊥BE,∴A1C⊥BE.又∵BD∩BE=B,∴A1C⊥平面EBD.
    1.判定线面垂直的步骤与方法(1)利用直线与平面垂直的判定定理判定直线与平面垂直的步骤是:①在这个平面内找两条直线,使它和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.
    (2)判定线面垂直的方法有:①利用线面垂直的定义:一条直线垂直于平面内的任意直线,则该直线垂直于这个平面;②利用线面垂直的判定定理;③证明线线(或线面)垂直时,除了利用平面几何知识(勾股定理逆定理,菱形对角线、圆周角定理等)之外,还需要注意运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.
    相关课件

    数学选择性必修 第一册3.2 双曲线授课课件ppt: 这是一份数学选择性必修 第一册3.2 双曲线授课课件ppt,共41页。PPT课件主要包含了课堂互动讲练,知能优化训练,课前自主学案,学习目标,成立或不成立,真命题,假命题,思考感悟,四种命题结构,思路点拨等内容,欢迎下载使用。

    高中数学湘教版选修2-1:(课件)3.4 直线与平面的垂直关系:

    高中数学3.3 抛物线课文配套ppt课件: 这是一份高中数学3.3 抛物线课文配套ppt课件,共37页。PPT课件主要包含了课堂互动讲练,知能优化训练,课前自主学案,学习目标,不共线,正交分解,λ1e1+λ2e2,两两垂直,不共面,思考感悟等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map