2021学年1.1 集合的含义及其表示教学设计
展开
这是一份2021学年1.1 集合的含义及其表示教学设计,共8页。教案主要包含了填空题,解答题等内容,欢迎下载使用。
§1.1 集合的含义及其表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用. 1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、及-所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,,组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合. 11.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a. 能力提升12.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少? 13.设A为实数集,且满足条件:若a∈A,则∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集. 1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系. 第1章 集 合§1.1 集合的含义及其表示第1课时 集合的含义知识梳理1.集合 元素 元 2.大写拉丁字母A,B,C… 小写拉丁字母a,b,c,… 3.属于 ∈ 属于 不属于 ∉ 不属于4.确定性 互异性 无序性 5.R Q Z N N* N+作业设计1.③解析 ①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析 由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析 集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析 因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③.5.3解析 由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x|=±x,=|x|,-=-x,所以不论x取何值,最多只能写成两种形式:x、-x,故集合中最多含有2个元素.7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x=0,1,-1时,都有x2∈A,但考虑到集合元素的互异性,x≠0,x≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确,因为个子高没有明确的标准.11.解 由-3∈A,可得-3=a-2或-3=2a2+5a,∴a=-1或a=-.则当a=-1时,a-2=-3,2a2+5a=-3,不符合集合中元素的互异性,故a=-1应舍去.当a=-时,a-2=-,2a2+5a=-3,∴a=-.12.解 ∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a∈A,则∈A.又∵2∈A,∴=-1∈A.∵-1∈A,∴=∈A.∵∈A,∴=2∈A.∴A中另外两个元素为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无解.∴a≠,∴A不可能为单元素集. 第2课时 集合的表示 课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合. 1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等.3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x|p(x)}的形式.4.集合的分类(1)有限集:含有________元素的集合称为有限集.(2)无限集:含有________元素的集合称为无限集.(3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x∈N+|x-3<2}用列举法可表示为___________________________________.2.集合{(x,y)|y=2x-1}表示________.(填序号)①方程y=2x-1;②点(x,y);③平面直角坐标系中的所有点组成的集合;④函数y=2x-1图象上的所有点组成的集合.3.将集合表示成列举法为______________.4.用列举法表示集合{x|x2-2x+1=0}为________.5.已知集合A={x∈N|-≤x≤},则有________.(填序号)①-1∈A;②0∈A;③∈A;④2∈A.6.方程组的解集不可表示为________.①{(x,y)|};②{(x,y)|};③{1,2};④{(1,2)}.7.用列举法表示集合A={x|x∈Z,∈N}=______________________________.8.下列各组集合中,满足P=Q的为________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,,π},N={π,1,|-|}.二、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合. 11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由. 能力提升12.下列集合中,不同于另外三个集合的是________.①{x|x=1};②{y|(y-1)2=0};③{x=1};④{1}.13.已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},若x0∈M,则x0与N的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑. 第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件4.(1)有限个 (2)无限个 (3)∅作业设计1.{1,2,3,4}解析 {x∈N+|x-3<2}={x∈N+|x<5}={1,2,3,4}.2.④解析 集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合.3.{(2,3)}解析 解方程组得所以答案为{(2,3)}.4.{1}解析 方程x2-2x+1=0可化简为(x-1)2=0,∴x1=x2=1,故方程x2-2x+1=0的解集为{1}.5.②6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合.7.{5,4,2,-2}解析 ∵x∈Z,∈N,∴6-x=1,2,4,8.此时x=5,4,2,-2,即A={5,4,2,-2}.8.②解析 ①中P、Q表示的是不同的两点坐标;②中P=Q;③中P表示的是点集,Q表示的是数集.9.④解析 只有④中M和N的元素相等,故答案为④.10.解 ①∵方程x(x2+2x+1)=0的解为0和-1,∴解集为{0,-1};②{x|x=2n+1,且x<1 000,n∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A中代表的元素是x,满足条件y=x2+3中的x∈R,所以A=R;集合B中代表的元素是y,满足条件y=x2+3中y的取值范围是y≥3,所以B={y|y≥3}.集合C中代表的元素是(x,y),这是个点集,这些点在抛物线y=x2+3上,所以C={P|P是抛物线y=x2+3上的点}.12.③解析 由集合的含义知{x|x=1}={y|(y-1)2=0}={1},而集合{x=1}表示由方程x=1组成的集合.13.x0∈N解析 M={x|x=,k∈Z},N={x|x=,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N.
相关教案
这是一份苏教版1.3 交集、并集教案设计,共4页。教案主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份高中数学1.2 子集、全集、补集教案,共4页。教案主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份高中数学苏教版必修1第1章 集合1.1 集合的含义及其表示教案,共5页。教案主要包含了复习回顾,问题解决,练习反馈,课后作业,学后反思等内容,欢迎下载使用。