![数学:1.2《子集、全集、补集》教案三(苏教版必修1)第1页](http://img-preview.51jiaoxi.com/3/3/12484540/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学:1.2《子集、全集、补集》教案三(苏教版必修1)第2页](http://img-preview.51jiaoxi.com/3/3/12484540/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学苏教版必修1第1章 集合1.2 子集、全集、补集教学设计
展开
这是一份高中数学苏教版必修1第1章 集合1.2 子集、全集、补集教学设计,共4页。教案主要包含了创设情境,活动尝试,师生探究,数学理论,巩固运用,回顾反思,课外练习,教学后记等内容,欢迎下载使用。
子集、全集、补集(一)教学目标:理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系.教学重点:子集的概念,真子集的概念.教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算.课 型:新授课教学手段:讲、议结合法教学过程:一、创设情境在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系二、活动尝试1.回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图 2.用列举法表示下列集合:① {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}3.用描述法表示集合: 4.用列举法表示:“与2相差3的所有整数所组成的集合”={-1,5}5.问题:观察下列两组集合,说出集合A与集合B的关系(共性)(1)A={-1,1},B={-1,0,1,2}(2)A=N,B=R(3)A={为北京人},B= {为中国人}(4)A=,B={0}(集合A中的任何一个元素都是集合B的元素)三、师生探究通过观察上述集合间具有如下特殊性(1)集合A的元素-1,1同时是集合B的元素.(2)集合A中所有元素,都是集合B的元素.(3)集合A中所有元素都是集合B的元素.(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素.由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.四、数学理论1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A.记作AB(或BA),这时我们也说集合A是集合B的子集.请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.2.真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:AB或BA, 读作A真包含于B或B真包含A这应理解为:若AB,且存在b∈B,但bA,称A是B的真子集.注意:子集与真子集符号的方向3.当集合A不包含于集合B,或集合B不包含集合A时,则记作AB(或BA).如:A={2,4},B={3,5,7},则AB.4.说明(1)空集是任何集合的子集ΦA(2)空集是任何非空集合的真子集ΦA 若A≠Φ,则ΦA(3)任何一个集合是它本身的子集(4)易混符号①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系如ΦR,{1}{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ{0}不能写成Φ={0},Φ∈{0}五、巩固运用例1(1) 写出N,Z,Q,R的包含关系,并用文氏图表示(2)判断下列写法是否正确①ΦA ②ΦA ③ ④AA 解(1):NZQR (2)①正确;②错误,因为A可能是空集;③正确;④错误;思考1:与能否同时成立?结论:如果AB,同时BA,那么A=B.如:{a,b,c,d}与{b,c,d,a}相等;{2,3,4}与{3,4,2}相等;{2,3}与{3,2}相等.问:A={x|x=2m+1,m∈Z},B={x|x=2n-1,n∈Z}.(A=B)稍微复杂的式子特别是用描述法给出的要认真分辨.思考2:若AB,BC,则AC?真子集关系也具有传递性若AB,BC,则AC.例2写出{a、b}的所有子集,并指出其中哪些是它的真子集.分析:寻求子集、真子集主要依据是定义.解:依定义:{a,b}的所有子集是、{a}、{b}、{a,b},其中真子集有、{a}、{b}.变式:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?()(2)集合的所有子集的个数是多少?()注:如果一个集合的元素有n个,那么这个集合的子集有2n个,真子集有2n-1个.六、回顾反思1.概念:子集、集合相等、真子集2.性质:(1)空集是任何集合的子集ΦA(2)空集是任何非空集合的真子集ΦA (A≠Φ)(3)任何一个集合是它本身的子集(4)含n个元素的集合的子集数为;非空子集数为;真子集数为;非空真子集数为七、课外练习1.下列各题中,指出关系式AB、AB、AB、AB、A=B中哪些成立:(1)A={1,3,5,7},B={3,5,7}.解:因B中每一个元素都是A的元素,而A中每一个元素不一定都是B的元素,故AB及AB成立.(2)A={1,2,4,8},B={x|x是8的约数}.解:因x是8的约数,则x:1,2,4,8那么集合A的元素都是集合B的元素,集合B的元素也都是集合A的元素,故A=B.式子AB、AB、A=B成立.2.判断下列式子是否正确,并说明理由.(1)2{x|x≤10}解:不正确.因数2不是集合,也就不会是{x|x≤10}的子集.(2)2∈{x|x≤10}解:正确.因数2是集合{x|x≤10}中数.故可用“∈”.(3){2}{x|x≤10}解:正确.因{2}是{x|x≤10}的真子集.(4) ∈{x|x≤10}解:不正确.因为是集合,不是集合{x|x≤10}的元素.(5) {x|x≤10}解:不正确.因为是任何非空集合的真子集.(6) {x|x≤10}解:正确.因为是任何非空集合的真子集.(7){4,5,6,7}{2,3,5, 7,11}解:正确.因为{4,5,6,7}中4,6不是{2,3,5,7,11}的元素.(8){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中不含{2,3,5,7,11}中的2,3,11. 3.设集合A={四边形},B={平行四边形},C={矩形} D={正方形},试用Venn图表示它们之间的关系。4.已知A={x|x<-2或x>3},B={x|4x+m<0},当AB时,求实数m的取值范围.分析:该题中集合运用描述法给出,集合的元素是无限的,要准确判断两集合间关系.需用数形结合.解:将A及B两集合在数轴上表示出来要使AB,则B中的元素必须都是A中元素即B中元素必须都位于阴影部分内那么由x<-2或x>3及x<-知-<-2即m>8故实数m取值范围是m>85.满足的集合有多少个?解析:由可知,集合必为非空集合;又由可知,此题即为求集合的所有非空子集。满足条件的集合有,共十五个非空子集。此题可以利用有限集合的非空子集的个数的公式进行检验,,正确。答案:156.已知,若,求。解析:,即两集合的元素相同,有两种可能:解得 ; 解得∴或。答案: 或。八、教学后记本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质
相关教案
这是一份高中数学苏教版必修11.2 子集、全集、补集教学设计,共3页。教案主要包含了问题情境,学生活动,数学建构,数学运用,回顾小结,作业等内容,欢迎下载使用。
这是一份高中苏教版1.2 子集、全集、补集教学设计,共7页。
这是一份苏教版必修11.2 子集、全集、补集教学设计,共7页。