高中数学苏教版必修12.2.2 函数的奇偶性教学设计
展开
第十课时 函数的奇偶性(1)
【学习导航】
知识网络
学习要求
1.了解函数奇偶性的含义;
2.掌握判断函数奇偶性的方法,能证明一些简单函数的奇偶性;
3.初步学会运用函数图象理解和研究函数的性质
自学评价
1.偶函数的定义:
如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数.
注意:(1) “任意”、“都有”等关键词;
(2)奇偶性是函数的整体性质,对定义域内任意一个都必须成立;
2.奇函数的定义:
如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数.
3.函数图像与单调性:
奇函数的图像关于原点对称;
偶函数的图像关于轴对称.
4.函数奇偶性证明的步骤:
(1)考察函数的定义域是否关于“0”对称;
(2)计算的解析式,并考察其与的解析式的关系 ;
(3)下结论 .
【精典范例】
一.判断函数的奇偶性:
例1:判断下列函数是否是奇函数或偶函数:
判断下列函数的奇偶性:
(1) (2)
(3),
(4) (5)
析:函数的奇偶性的判断和证明主要用定义。
【解】(1) 函数的定义域为,关于原点对称,
且,所以该函数是奇函数。
(2)函数的定义域为,关于原点对称,
且,所以该函数既不是奇函数也不是偶函数,即是非奇非偶函数。
(3) 函数,的定义域为不关于原点对称,故该函数是非奇非偶函数。
(4)函数的定义域为,关于原点对称,,所以该函数既是奇函数又是偶函数。
(5) 函数的定义域为,关于原点对称,,所以该函数是偶函数。
二.根据函数奇偶性定义求一些特殊的函数值:
例2:已知函数是定义域为的奇函数,求的值.
【解】
∵是定义域为的奇函数,
∴对任意实数都成立,
把代入得
,
∴.
三.已知函数的奇偶性求参数值:
例3:已知函数是偶函数,求实数的值.
【解】∵是偶函数,∴恒成立,
即恒成立,
∴恒成立,∴,即.
追踪训练一
1. 给定四个函数;;;;其中是奇函数的个数是(B)
1个 2个
3个 4个
2. 如果二次函数是偶函数,则 3.
3. 判断下列函数的奇偶性:
(1)
(2)
(3)
解:(1)函数的定义域为,关于原点对称,
对于定义域中的任意一个,
所以该函数是偶函数;
(2)函数 的定义域得关于原点对称,此时
对于定义域中的任意一个,
所以该函数是奇函数;
(3) 函数的定义域为关于原点对称,此时,所以该函数既是奇函数又是偶函数。
【选修延伸】
构造函数的奇偶性求函数值:
例3: 已知函数若,求的值。
析:该函数解析式中含有两个参数,只有一个等式,故一般不能求得的值,而两个自变量互为相反数,我们应该从这儿着手解决问题。
【解】
方法一: 由题意得①
②
①+②得
∵
∴
方法二: 构造函数,
则一定是奇函数
又∵,∴
因此 所以,即.
说明:
1.如果函数是奇函数或偶函数,我们就说函数具有奇偶性;
根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数也不是偶函数;
2.奇、偶函数的定义域关于“0”对称.如果一个函数的定义域不关于“0”对称,则该函数既不是奇函数也不是偶函数;
思维点拔:
一、等式和的变形形式:
我们在探讨或证明函数的奇偶性过程中,处了将进行化简,其方向是或以外,我们还可以看到其等价形式、或当恒成立时,也有、.
追踪训练
1.下列结论正确的是: (C )
偶函数的图象一定与轴相交;
奇函数的图象一定过原点;
偶函数的图象若不经过原点,则它与轴的交点的个数一定是偶数;
定义在上的增函数一定是奇函数.
2. 若函数为奇函数,且当时,,则当时,有(C) ( )
≤0
-
3. 设函数f(x)在(-∞,+∞)内有定义,下列函数.
①y=-| f(x)|
②y=xf(x2)
③y=-f(-x)
④y= f(x)-f(-x)
中必为奇函数的有____②④____________.(要求填写正确答案的序号).
4. 设奇函数f(x)的定义域为[-5,5].
若当x∈[0,5]时, f(x)的图象如下图,则
不等式的解是 .
5.若是定义在上的函数,是奇函数,是偶函数,且,求的表达式.
解:由题意得:
则
【师生互动】
学生质疑 |
|
教师释疑 |
|
2020-2021学年3.3 幂函数教学设计: 这是一份2020-2021学年3.3 幂函数教学设计,共3页。教案主要包含了学习导航,精典范例,选修延伸等内容,欢迎下载使用。
数学必修13.3 幂函数教学设计: 这是一份数学必修13.3 幂函数教学设计,共3页。教案主要包含了学习导航,精典范例,选修延伸等内容,欢迎下载使用。
苏教版必修13.2.1 对数教案: 这是一份苏教版必修13.2.1 对数教案,共3页。教案主要包含了学习导航,精典范例,选修延伸等内容,欢迎下载使用。