![《指数函数》同步练习7(苏教版必修1)教案第1页](http://img-preview.51jiaoxi.com/3/3/12484977/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![《指数函数》同步练习7(苏教版必修1)教案第2页](http://img-preview.51jiaoxi.com/3/3/12484977/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学必修13.1.2 指数函数教案
展开
这是一份数学必修13.1.2 指数函数教案,共5页。
指数函数A组1.(2010年黑龙江哈尔滨模拟)若a>1,b<0,且ab+a-b=2,则ab-a-b的值等于________.解析:∵a>1,b<0,∴0<ab<1,a-b>1.又∵(ab+a-b)2=a2b+a-2b+2=8,∴a2b+a-2b=6,∴(ab-a-b)2=a2b+a-2b-2=4,∴ab-a-b=-2.答案:-22.已知f(x)=ax+b的图象如图所示,则f(3)=________.解析:由图象知f(0)=1+b=-2,∴b=-3.又f(2)=a2-3=0,∴a=,则f(3)=()3-3=3-3.答案:3-33.函数y=()2x-x2的值域是________.解析:∵2x-x2=-(x-1)2+1≤1,∴()2x-x2≥.答案:[,+∞)4.(2009年高考山东卷)若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是________.解析:函数f(x)的零点的个数就是函数y=ax与函数y=x+a交点的个数,由函数的图象可知a>1时两函数图象有两个交点,0<a<1时两函数图象有惟一交点,故a>1. 答案:(1,+∞)5.(原创题)若函数f(x)=ax-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a等于________.解析:由题意知无解或⇒a=.答案:6.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1.从而有f(x)=.又由f(1)=-f(-1)知=-,解得a=2.(2)法一:由(1)知f(x)==-+,由上式易知f(x)在R上为减函数,又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0⇔f(t2-2t)<-f(2t2-k)=f(-2t2+k).因f(x)是R上的减函数,由上式推得t2-2t>-2t2+k.即对一切t∈R有3t2-2t-k>0,从而Δ=4+12k<0,解得k<-.法二:由(1)知f(x)=,又由题设条件得+<0即(22t2-k+1+2)(-2t2-2t+1)+(2t2-2t+1+2)(-22t2-k+1)<0整理得23t2-2t-k>1,因底数2>1,故3t2-2t-k>0上式对一切t∈R均成立,从而判别式Δ=4+12k<0,解得k<-.B组1.如果函数f(x)=ax+b-1(a>0且a≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a<1且b>0 ②0<a<1且0<b<1 ③a>1且b<0 ④a>1且b>0解析:当0<a<1时,把指数函数f(x)=ax的图象向下平移,观察可知-1<b-1<0,即0<b<1.答案:②2.(2010年保定模拟)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是________.解析:f(x)=-x2+2ax=-(x-a)2+a2,所以f(x)在[a,+∞)上为减函数,又f(x),g(x)都在[1,2]上为减函数,所以需⇒0<a≤1.答案:(0,1]3.已知f(x),g(x)都是定义在R上的函数,且满足以下条件①f (x)=ax·g(x)(a>0,a≠1);②g(x)≠0;若+=,则a等于________.解析:由f(x)=ax·g(x)得=ax,所以+=⇒a+a-1=,解得a=2或.答案:2或4.(2010年北京朝阳模拟)已知函数f(x)=ax(a>0且a≠1),其反函数为f-1(x).若f(2)=9,则f-1()+f(1)的值是________.解析:因为f(2)=a2=9,且a>0,∴a=3,则f(x)=3x=,∴x=-1,故f-1()=-1.又f(1)=3,所以f-1()+f(1)=2.答案:25.(2010年山东青岛质检)已知f(x)=()x,若f(x)的图象关于直线x=1对称的图象对应的函数为g(x),则g(x)的表达式为________.解析:设y=g(x)上任意一点P(x,y),P(x,y)关于x=1的对称点P′(2-x,y)在f(x)=()x上,∴y=()2-x=3x-2.答案:y=3x-2(x∈R)6.(2009年高考山东卷改编)函数y=的图象大致为________. 解析:∵f(-x)==-=-f(x),∴f(x)为奇函数,排除④.又∵y====1+在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f(x)满足:当x≥4时,f(x)=()x;当x<4时,f(x)=f(x+1),则f(2+log23)=________.解析:∵2<3<4=22,∴1<log23<2.∴3<2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=()log224=2-log224=2log2=.答案:8.(2009年高考湖南卷改编)设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为________.解析:由f(x)=2-|x|≤得x≥1或x≤-1,∴fK(x)=则单调增区间为(-∞,-1].答案:(-∞,-1]9.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是________. 解析:函数y=2|x|的图象如图.当a=-4时,0≤b≤4,当b=4时,-4≤a≤0,答案:②10.(2010年宁夏银川模拟)已知函数f(x)=a2x+2ax-1(a>0,且a≠1)在区间[-1,1]上的最大值为14,求实数a的值.解:f(x)=a2x+2ax-1=(ax+1)2-2,∵x∈[-1,1],(1)当0<a<1时,a≤ax≤,∴当ax=时,f(x)取得最大值.∴(+1)2-2=14,∴=3,∴a=.(2)当a>1时,≤ax≤a,∴当ax=a时,f(x)取得最大值.∴(a+1)2-2=14,∴a=3.综上可知,实数a的值为或3.11.已知函数f(x)=.(1)求证:f(x)的图象关于点M(a,-1)对称;(2)若f(x)≥-2x在x≥a上恒成立,求实数a的取值范围.解:(1)证明:设f(x)的图象C上任一点为P(x,y),则y=-,P(x,y)关于点M(a,-1)的对称点为P′(2a-x,-2-y).∴-2-y=-2+===,说明点P′(2a-x,-2-y)也在函数y=的图象上,由点P的任意性知,f(x)的图象关于点M(a,-1)对称.(2)由f(x)≥-2x得≥-2x,则≤2x,化为2x-a·2x+2x-2≥0,则有(2x)2+2a·2x-2·2a≥0在x≥a上恒成立.令g(t)=t2+2a·t-2·2a,则有g(t)≥0在t≥2a上恒成立.∵g(t)的对称轴在t=0的左侧,∴g(t)在t≥2a上为增函数.∴g(2a)≥0.∴(2a)2+(2a)2-2·2a≥0,∴2a(2a-1)≥0,则a≥0.即实数a的取值范围为a≥0.12.(2008年高考江苏)若f1(x)=3|x-p1|,f2(x)=2·3|x-p2|,x∈R,p1、p2为常数,且f(x)=(1)求f(x)=f1(x)对所有实数x成立的充要条件(用p1、p2表示);(2)设a,b是两个实数,满足a<b,且p1、p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n-m).解:(1)f(x)=f1(x)恒成立⇔f1(x)≤f2(x)⇔3|x-p1|≤2·3|x-p2|⇔3|x-p1|-|x-p2|≤2⇔|x-p1|-|x-p2|≤log32.(*)若p1=p2,则(*)⇔0≤log32,显然成立;若p1≠p2,记g(x)=|x-p1|-|x-p2|,当p1>p2时,g(x)=所以g(x)max=p1-p2,故只需p1-p2≤log32.当p1<p2时,g(x)=所以g(x)max=p2-p1,故只需p2-p1≤log32.综上所述,f(x)=f1(x)对所有实数x成立的充要条件是|p1-p2|≤log32.(2)证明:分两种情形讨论.①当|p1-p2|≤log32时,由(1)知f(x)=f1(x)(对所有实数x∈[a,b]),则由f(a)=f(b)及a<p1<b易知p1=.再由f1(x)=的单调性可知,f(x)在区间[a,b]上的单调增区间的长度为b-=.②当|p1-p2|>log32时,不妨设p1<p2,则p2-p1>log32.于是,当x≤p1时,有f1(x)=3p1-x<3p2-x<f2(x),从而f(x)=f1(x).当x≥p2时,f1(x)=3x-p1=3p2-p1·3x-p2>3log32·3x-p2=f2(x),从而f(x)=f2(x).当p1<x<p2时,f1(x)=3x-p1及f2(x)=2·3p2-x,由方程3x0-p1=2·3p2-x0,解得f1(x)与f2(x)图象交点的横坐标为x0=+log32.①显然p1<x0=p2-[(p2-p1)-log32]<p2,这表明x0在p1与p2之间.由①易知f(x)=综上可知,在区间[a,b]上,f(x)=故由函数f1(x)与f2(x)的单调性可知,f(x)在区间[a,b]上的单调增区间的长度之和为(x0-p1)+(b-p2),由于f(a)=f(b),即3p1-a=2·3b-p2,得p1+p2=a+b+log32.②故由①②得(x0-p1)+(b-p2)=b-(p1+p2-log32)=.
相关教案
这是一份苏教版必修1第3章 指数函数、对数函数和幂函数3.1 指数函数3.1.2 指数函数教案及反思,共3页。教案主要包含了选择题.,填空题.,解答题等内容,欢迎下载使用。
这是一份数学必修13.1.2 指数函数教学设计,共17页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学苏教版必修13.1.2 指数函数教学设计及反思,共3页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)